Physics I Equation Sheet

Kinematics

1-D Kinematics

Position x(t)

Special Case: Constant Acceleration

Velocity
$$v(t) = \frac{d}{dt}x(t)$$

$$a = constant$$

$$v(t) = v_0 + at$$

Acceleration
$$a(t) = \frac{d}{dt}v(t)$$

$$x(t) = x_0 + v_0 t + \frac{1}{2}at^2$$
 $v^2 = v_0^2 + 2a(x - x_0)$

$$v^2 = v_0^2 + 2a(x - x_0)$$

3-D Kinematics

$$\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$$

$$\mathbf{v}(t) = \frac{d}{dt}\mathbf{r}(t) = \frac{dx}{dt}\mathbf{i} + \frac{dy}{dt}\mathbf{j} + \frac{dz}{dt}\mathbf{k}$$
$$= v_x(t)\mathbf{i} + v_y(t)\mathbf{j} + v_z\mathbf{k}$$

$$a_x = 0$$
 $a_y = -g$ $v_x(t) = v_{0x}$ $v_y(t) = v_{0y} - gt$ $x(t) = x_0 + v_{0x}t$ $y(t) = y_0 + v_{0y}t - \frac{1}{2}gt^2$

$$\mathbf{a}(t) = \frac{d}{dt}\mathbf{v}(t) = \frac{d^2x}{dt^2}\mathbf{i} + \frac{d^2y}{dt^2}\mathbf{j} + \frac{d^2z}{dt^2}\mathbf{k}$$
$$= a_x(t)\mathbf{i} + a_y(t)\mathbf{j} + a_z(t)\mathbf{k}$$

$$\mathbf{v} = \mathbf{w} + \mathbf{v}_F$$

$$\mathbf{r}(t) = \mathbf{r}_0 + \int_0^t \mathbf{v}(t')dt'$$
$$\mathbf{v}(t) = \mathbf{v}_0 + \int_0^t \mathbf{a}(t')dt'$$

v: Velocity in stationary frame w: Velocity in moving frame \mathbf{v}_F : Velocity of moving frame

Circular Motion

Motion on a Circle of Radius
$$R$$

$$\mathbf{r}(t) = R\cos(\theta(t))\mathbf{i} + R\sin(\theta(t))\mathbf{j}$$

Angular Position
$$\theta(t)$$

Angular Velocity
$$\omega(t) = \frac{d}{dt}(t)$$

Angular Acceleration
$$\alpha(t) = \frac{d}{dt}\omega(t)$$

Uniform Circular Motion (Constant
$$\omega$$
)

$$T$$
: Period – time for one cycle

$$f$$
: Frequency – cycles per second

$$\alpha = 0 \implies a_t = 0$$
 $\omega = \text{constant}$

$$\omega = \frac{2\pi}{T} = 2\pi f \qquad v_t = \omega R$$

Constant Angular Acceleration (Constant α)

Tangential Velocity
$$v_t = \omega R$$

Tangential Acceleration
$$a_t = \alpha R$$

Centripetal Acceleration
$$a_c = \omega^2 R = rac{v_t^2}{R}$$

$$\alpha = constant$$

$$\alpha = {\sf constant}$$
 $\omega(t) = \omega_0 + \alpha t$

Centripetal Acceleration
$$a_t = \alpha R$$

$$a_c = \omega^2 R = \frac{v_t^2}{R} \qquad \theta(t) = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2 \qquad \omega^2 = \omega_0^2 + 2\alpha (\theta - \theta_0)$$

Dynamics

Newton's Three Laws

$$\sum F = 0 \qquad \qquad \text{Objects in motion tend to stay in motion unless acted upon} \\ \Longrightarrow v = \text{constant}$$

$$\sum \mathbf{F} = m\mathbf{a}$$
 The sum of all the forces acting on an object equals the object's mass times its acceleration.

$${f F}_{12}=-{f F}_{21}$$
 For every action there is an equal and opposite reaction.

Common Forces

Normal Force	$0 \le N \le \infty$	The normal force exerts enough force to keep an object from
		two voling through another

Static Friction
$$0 \le F_S \le \mu_s N$$
 Static friction exerts enough force to keep an object from

sliding until the force required is greater than
$$\mu_s N$$

Kinetic Friction
$$F_K = \mu_k N$$
 Kinetic friction applies to a sliding object on a surface with

Spring Force
$$F_E=-k(x-x_0)$$
 Elastic forces, such as for a spring, act in the direction of the

equilibrium position x_0 and are linearly proportional to the

displacement from equilibrium $x - x_0$.

Circular Dynamics

For Circular Motion:

$$a_c = \omega^2 R = \frac{v_t^2}{R} \implies \sum F = F_c = m\omega^2 R = \frac{mv_t^2}{R}$$

The sum of the forces (net force) must equal F_c , the centripetal force, to have circular motion. The centripetal force and acceleration point towards the center of the circle.

Conservation Laws

Work & Kinetic Energy

Work – Variable Force
$$\int_{{f r}_1}^{{f r}_2} {f F} \cdot d{f r}$$

Work – Constant Force
$$\mathbf{F} \cdot \mathbf{d} = Fd \cos \theta$$

Kinetic Energy
$$K = \frac{1}{2}mv^2$$

Power
$$P = \frac{dW}{dt} = \mathbf{F} \cdot \mathbf{v}$$

Work-Energy Theorem

$$\Delta K = K_f - K_i = W_{net}$$

The change in kinetic energy of a system is equal to the net work done.

 $W_{net}>0$: Energy is transferred into the system $W_{net}<0$: Energy is transferred out of the system

Potential Energy

Conservative Force
$$\oint \mathbf{F}_c \cdot d\mathbf{r} = 0$$

Potential Energy
$$\Delta U = -\int_{\mathbf{r}_1}^{\mathbf{r}_2} \mathbf{F}_c \cdot d\mathbf{r}$$

$$\mathbf{F}_c \cdot d\mathbf{r}$$
 Generalized Work-Energy Theorem $\Delta E = \Delta K + \Delta U = W_{ext}$

Force – Potential
$$F_c(x) = -\frac{d}{dx}U(x)$$

Gravitational Potential
$$U_g(y) = mgy + U_0$$

Elastic Potential
$$U_e(x) = \frac{1}{2}k(x-x_0)^2$$

For an isolated system
$$W_{ext}=0$$
 and $\Delta E=0 \implies K_i+U_i=K_f+U_f$

Linear Momentum

Inelastic Collisions Elastic Collisions
$$\begin{aligned} \mathbf{p} &= m\mathbf{v} & \sum \mathbf{p}_i = \sum \mathbf{p}_f & \sum \mathbf{p}_i = \sum \mathbf{p}_f \\ \mathbf{J} &= \Delta \mathbf{p} = \int_{t_1}^{t_2} \mathbf{F}(t) dt & \end{aligned}$$

Newton's Second Law
$$\mathbf{F} = \frac{d}{dt}\mathbf{p}$$

Conservation of Momentum
$$\sum \mathbf{p}_i = \sum \mathbf{p}_f$$

1D elastic collision with
$$v_{2i}=0$$
:

$$v_{1f} = \frac{m_1 - m_2}{m_1 + m_2} v_{1i} \quad v_{2f} = \frac{2m_1}{m_1 + m_2} v_{1i}$$

Angular Momentum

Angular Momentum
$$\mathbf{L} = \mathbf{r} \times \mathbf{p}$$

Single Particle

Angular Momentum
$$\mathbf{L}=Ioldsymbol{\omega}$$

Rigid Body
$${\sf Newton's \ Second \ Law} \quad {\pmb \tau} = \frac{d}{dt} {\bf L}$$

$$\mathbf{L}_i = \mathbf{L}_f$$

$$au_{ext} = rac{d}{dt}\mathbf{L} = \mathbf{0}$$

Rigid Body Motion

Center of Mass

Center of Mass
$$\mathbf{r}_{CM} = \frac{\sum_i m_i \mathbf{r}_i}{M}$$
 The center of mass represents the point about which a rigid body behaves as a point mass with total mass M .

$$M = \sum_{i} m_i$$

Linear Momentum
$$\mathbf{p} = M\mathbf{v}_{CM}$$
 The total linear momentum of a rigid body is the total mass times the velocity of the center of mass.

Newton's 2nd Law
$$\sum \mathbf{F} = M\mathbf{a}_{CM}$$
 The sum of all forces causes a linear acceleration of the center of mass.

Moment of Inertia

Moment of Inertia
$$I = \sum_i m_i \mathbf{r}_i^2$$
 The moment of inertia represent how a rigid body resists rotation about its center of mass.

Torque
$$au=\mathbf{r} imes\mathbf{F}$$
 A force applied at a distance from a rotation point induces a torque about the axis of rotation.

$$\tau = rF\sin\phi$$

Newton's 2nd Law
$$\sum_i au_i = I lpha$$
 The sum of all torques causes an angular acceleration about the center of mass or rotation point.

Energy of a Rigid Body

Translational Kinetic Energy
$$K_t = \frac{1}{2}Mv_{CM}^2$$
 Rolling Without Slipping:

Rotational Kinetic Energy
$$K_r=rac{1}{2}I\omega^2$$
 $v_{CM}=R\omega$ $a_{CM}=R\alpha$

Total Kinetic Energy
$$K=K_t+K_r$$
 $K=K_t+K_r=rac{1}{2}v_{CM}^2\left(M+rac{I}{R^2}
ight)$

Waves and Oscillations

Simple Harmonic Oscillator

General Solution

Properties

Displacement
$$x(t) = A\cos(\omega_0 t + \phi)$$

Frequency

$$T = \frac{2\pi}{\omega_0}$$

Velocity
$$v(t) = -A\omega_0 \sin(\omega_0 t + \phi)$$

Acceleration
$$a(t) = -A\omega_0^2\cos(\omega_0 t + \phi)$$

$$f = \frac{\omega_0}{2\pi} = \frac{1}{T}$$

$$F(t) = -Cx(t)$$

Mass-Spring
$$\omega_0 = \sqrt{\frac{k}{m}}$$

$$K(t) = \frac{A^2 \omega_0^2 m}{2} \sin^2(\omega_0 t + \phi)$$

Pendulum
$$\omega_0 = \sqrt{rac{g}{L}}$$

Potential Energy
$$U(t)=rac{A^2\omega_0^2m}{2}\cos^2(\omega_0t+\phi)$$

Damped Oscillator:
$$\omega_d = \sqrt{|\alpha^2 - \omega_0^2|}$$

Overdamped:
$$\alpha > \omega_0$$

Underdamped:
$$\alpha < \omega_0$$

$$x(t) = e^{-\alpha t} \left[A \cosh(\omega_d t) + B \sinh(\omega_d t) \right]$$

$$x(t) = e^{-\alpha t} \left[A \cos(\omega_d t) + B \sin(\omega_d t) \right]$$

Waves

Traveling Waves

General Properties

D'Alembert Solution
$$y(x,t) = f(x-ct) + g(x+ct)$$

Wavespeed

Sinusoidal Solution
$$y(x,t) = A\cos(kx \pm \omega t + \phi)$$

 $\lambda = \frac{c}{f}$ ${\sf Wavelength}$

Standing Waves

Wavenumber $k = \frac{2\pi}{\lambda} = \frac{\omega}{c}$

Fixed-Fixed String
$$y_n(x,t) = A_n \sin(k_n x) \cos(\omega_n t + \phi)$$

$$k_n = \frac{n\pi}{L}, \quad n = 1, 2, 3, \dots$$

Acoustics

1D Plane Wave
$$p(x,t) = A\cos(kx - \omega t + \phi)$$

1D Plane Wave
$$p(x,t) = A\cos(kx - \omega t + \phi)$$

Closed-Closed

$$p_n(x,t) = A_n \sin(k_n x) \cos(\omega_n)$$

Spherical Wave
$$p(r,t) = \frac{A\cos(kx - \omega t + \phi)}{r}$$

$$k_n = \frac{n\pi}{L}, \quad n = 1, 2, 3, \cdots$$

Sound Intensity
$$I = \frac{P}{S}$$

$$p_n(x,t) = A_n \cos(k_n x) \cos(\omega_n)$$
$$k_n = \frac{n\pi}{L}, \quad n = 1, 2, 3, \dots$$

(dB)
$$L = 10 \log_{10} I/I_0$$

$$p_n(x,t) = A_n \cos(k_n x) \cos(\omega_n)$$

$$I_0 = 1 \,\mathrm{pW}$$

$$k_n = \frac{n\pi}{4L}, \quad n = 1, 3, 5, \cdots$$