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ABSTRACT:
Models of acoustical systems commonly employ end corrections to represent the radiation impedance of a vibrating

element. Although several analytic solutions appear in the literature, the end corrections of an infinitely baffled

circular piston and an unbaffled semi-infinite circular pipe remain popular in modeling applications. This Letter com-

pares the end correction of these two configurations to that of a radially vibrating cap on a sphere. The results show

that the spherically baffled end correction, when expressed as a function of spherical-cap radius, falls between these

two extremal boundary conditions. VC 2024 Acoustical Society of America. https://doi.org/10.1121/10.0026023
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I. INTRODUCTION

Determining the acoustic impedance of a radiating com-

ponent is an essential aspect of acoustical modeling, from

transducer design1,2 to physical modeling of musical instru-

ments.3,4 At low frequencies, a simplified representation of

radiation effects follows by approximating the acoustic radia-

tion impedance as a lumped-element acoustic mass.

Researchers and practitioners commonly employ an “end

correction” to characterize this acoustic mass. Most available

analytic solutions to end corrections derive from straightfor-

ward boundary conditions and simple piston geometries, such

as the well-known end correction for an infinitely baffled

(flanged) circular piston.5 Later works have obtained analytic

solutions for other cases, such as for an unbaffled (unflanged)

semi-infinite cylindrical pipe6 or infinitely baffled rectangular

or elliptical pistons.7 However, the analytic solutions of end

corrections for more complex but realistic geometries, such as

sources with finite bodies, have remained ambiguous.

The end correction is crucial for precisely predicting

radiation and resonant behavior. For example, Ingard’s 1953

paper on acoustic resonators presented end corrections for

circular to circular, circular to rectangular, and rectangular

to rectangular cross sectional junctions to reduce

“discrepancies between theory and experiments” that may

arise when “the end correction is indiscriminately taken as

the mass end correction for a plane circular piston in an infi-

nite plane.”8 Accurately predicting a loudspeaker’s electri-

cal response requires proper estimation of radiation loading

effects.1 Likewise, physical models of wind instruments

employ end corrections to account for radiation effects at

tone holes and the instrument’s bell.3 Despite the signifi-

cance of precisely modeling radiation effects in these and

other applications, the actual value of the end correction is

often unknown due to complicated source geometries and

radiator element shapes. As a result, many works resort to

adapting the end corrections of either an infinitely baffled or

unbaffled circular piston or pipe. Better understanding of the

end corrections of more realistic geometries would improve

acoustical modeling in these areas.

More recently, Ref. 9 utilized the end correction for a

radially vibrating cap on a rigid sphere (a “spherically

baffled” piston) for use in predicting the low-frequency radi-

ation from a radially vibrating cap on a rigid spherical shell

with circular aperture. This Letter explores how the spheri-

cally baffled piston’s end correction varies over spherical-

cap angle. In particular, it details the relationship between

its end correction and that of the two most commonly

employed modeling approximations, that of the infinitely

baffled circular piston and that of the unbaffled semi-infinite

circular pipe. Results show that the spherically baffled

result, when expressed as a function of cap radius, falls

between these two limiting cases.

II. END CORRECTIONS OF RADIATING ELEMENTS

The acoustic impedance of a radiating element may be

approximated as an acoustic mass at low frequencies as1

ZAðxÞ � ixMA ¼ ix
q0l

S
; (1)

where x is the angular frequency, MA is the acoustic mass

(also termed the acoustic inertance), q0 is the ambient den-

sity, S is the surface area of the radiating portion, and l—
with units of length—is often termed as the “end

correction.” End corrections for many simple geometries,

such as infinitely baffled elliptical and rectangular pistons,

are readily available in the literature.3,7

Two of the most commonly employed end corrections

are that of an infinitely baffled circular piston, derived by
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lb ¼
8

3p
ap � 0:8488ap; (2)

and that of an unbaffled semi-infinite circular pipe, derived

by Levine and Schwinger as6

lub � 0:6133ap: (3)

In these equations, ap is the radius of the piston or the pipe,

where a “piston” refers to a vibrating component with con-

stant and uniform surface velocity (infinite internal imped-

ance). The termination of a “pipe” does not generally satisfy

these same boundary conditions. The distinction is impor-

tant because the end correction for a piston and pipe are dif-

ferent even for the same geometry, e.g., an infinitely baffled

circular pipe takes on a value of l � 0:8216ap,10 slightly

lower than the value for an infinitely baffled circular piston.

See Ref. 11 for further discussion.

However, most real sources are neither infinitely baf-

fled nor completely unbaffled. One might anticipate, at

least for circular pistons, that the end correction for a radi-

ating component of a source with a finite body may take

on an intermediate value. The end correction for a spheri-

cally baffled piston of cone half-angle hc (see Fig. 1) is

given as9

lsb ¼
2a

ð1� cos hcÞ
X1
n¼0

A2
n

ð2nþ 1Þðnþ 1Þ ; (4)

where a is the sphere’s radius and An are the expansion coef-

ficients for a radially vibrating cap on a sphere:1

An ¼

1

2
ð1� cos hcÞ; n ¼ 0;

1

2
ðPn�1ðcos hcÞ � Pnþ1ðcos hcÞÞ; n > 0;

8>><
>>: (5)

with Pn being the Legendre polynomials.

The value of the end correction divided by the sphere’s

radius as a function of cone half-angle hc appears in Fig. 2.

The limiting cases occur as hc ! 0 and hc ! p. In the for-

mer, the cap surface area S ¼ 2pa2ð1� cos hcÞ vanishes so

that the total acoustic mass displaced by the piston must

likewise tend to 0. As a result, as hc ! 0, the end correction

lsb ! 0.

As hc ! p, the expansion coefficients become

An ¼ dn0, with dnm the Kronecker delta, so that lsb ! a, the

sphere’s radius. When hc ¼ p, the radiation is equivalent to

that of a pulsating sphere, with acoustic impedance given

by1

ZAðxÞ ¼
ixq0a

Sð1þ ikaÞ
� ix

q0a

S
; ka� 1; (6)

where k is the wavenumber and S ¼ 4pa2 is the sphere’s sur-

face area. By inspection, the “end correction” for the pulsating

sphere is thus l¼ a, in concordance with the limiting case for

Eq. (4) (for a uniformly vibrating sphere with no definite

“end,” the term effective acoustic mass length would be more

appropriate). The value lsb=a monotonically increases from

zero to one as it interpolates between these two extremes.

III. RELATIONSHIP BETWEEN END CORRECTIONS

The end correction for the vibrating cap on a sphere

ranges between 0 and a as hc goes from 0 to p. However, it

is interesting to consider the end correction of the

FIG. 1. Diagram of a radially vibrating cap on a sphere. The normal compo-

nent of the particle velocity is constant over the spherical cap, depicted as

the thick solid black curve.

FIG. 2. End correction divided by the sphere radius a of a radially vibrating

cap on a sphere as a function of cone half-angle.
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spherically baffled piston as a function of the spherical-cap

radius, given as (see Fig. 1)

ac ¼ a sin hc; (7)

rather than as a function of the sphere’s radius a. For the baf-

fled and unbaffled circular piston and pipe, the end corrections

take the form of Cap, where C ¼ l=ap is a constant that

depends on the boundary conditions. For example, C ¼ 8=3p
for a baffled circular piston and C � 0:6133 for the unbaffled

semi-infinite circular pipe. Dividing the end correction of the

spherically baffled piston by the cap radius allows a more

straightforward comparison between end correction values.

Of particular interest is the limit as hc ! 0:

lim
hc!0

lsb=ac ¼ lim
hc!0

2

ð1� coshcÞ sinhc

X1
n¼0

A2
n

ð2nþ 1Þðnþ 1Þ :

(8)

While the end correction lsb goes to zero as hc ! 0 (see Fig.

2), so too does ac. One anticipates that in this limit, the

increasingly small spherical-cap piston may see an imped-

ance similar to that of an infinitely baffled circular piston.

First, it is convenient to simplify the expansion coeffi-

cients An for very small values of hc. Using the large-order

approximation of the Legendre polynomials yields [Eq.

(14.15.11) in Ref. 12]

Pnðcos hcÞ �

ffiffiffiffiffiffiffiffiffiffiffiffi
hc

sin hc

s
J0ððnþ 1=2ÞhcÞ; n� cos hc;

(9)

where J0 is the Bessel function of order zero. Additionally,

since hc � 1; sin hc � hc so that

Pnðcos hcÞ � J0ððnþ 1=2ÞhcÞ: (10)

The expansion coefficients become

An ¼
1

2
J0ððn� 1=2ÞhcÞ � J0ððnþ 3=2ÞhcÞ½ �: (11)

However, let g ¼ ðnþ 1=2Þhc so that

An ¼
1

2
J0ðg� hcÞ � J0ðgþ hcÞ½ �: (12)

Then

lim
hc!0

J0ðgþ hcÞ � J0ðg� hcÞ
2hc

¼ J00ðgÞ (13)

by the definition of a derivative, yielding

An ¼ �hcJ00ðgÞ ¼ hcJ1ðgÞ; hc � 1; (14)

where the last step followed by using derivative relations of

the Bessel functions [Eq. (10.6.2) in Ref. 13]. Although this

approximation is strictly valid for n� cos hc � 1, in

practice, the deviations between Eqs. (5) and (14) in calcu-

lating An for all n � 0 was less than 1% for cone half-angle

values hc < 3� (see supplementary material in Ref. 14).

Substituting this result into Eq. (4) and using the Taylor

series approximations of sin hc � hc and ð1� cos hcÞ
� h2

c=2 yields

lim
hc!0

lsb=ac ¼ lim
hc!0

2
X1
n¼0

J2
1ððnþ 1=2ÞhcÞ

hcðnþ 1=2Þðnþ 1Þ : (15)

Next, consider the cone half-angle hc to be analogous to a

discrete sampling step Dz. Then, the infinite summation over

the discrete index n represents adding the summand sampled

at half-integer points Dz=2; 3Dz=2, etc., which is a mid-

point Riemann sum with partition width Dz. Thus, in the

limit of small Dz, one would have, for example,

lim
Dz!0

X1
n¼0

J2
1ððnþ 1=2ÞDzÞDz ¼

ð1
0

J2
1ðzÞdz (16)

so that an integral replaces the infinite sum. In the summand

of Eq. (15), the terms ðnþ 1=2Þhc ¼ g become the continu-

ous variable z in the integral. In addition, the term ðnþ 1Þ
appearing in the denominator represents sampling at the

right end point of the partition; in the limit of an infinitely

small partition width Dz, the summand value may be

assumed roughly constant so that ðnþ 1Þ ! g=hc. Thus

lim
hc!0

lsb=ac ¼ lim
hc!0

2
X1
n¼0

J2
1ðgÞ
g2

hc

¼ 2

ð1
0

J2
1ðzÞ
z2

dz: (17)

This integral is trivial to evaluate using Bessel function rela-

tions [Eqs. (10.6.1) and 10.22.57) in Ref. 13]

2

ð1
0

J1ðzÞ
z

� �2

dz ¼
ð1

0

J0ðzÞ þ J2ðzÞð Þ J1ðzÞ
z

� �
dz

¼ 2

p
1þ 1

3

� �

¼ 8

3p
: (18)

Consequently,

lim
hc!0

lsb=ac ¼
8

3p
; (19)

which states that as the cone half-angle tends to zero, the

end correction divided by the spherical-cap radius tends to

that of an infinitely baffled circular piston.

The values of lsb=ac over varying cap half-angle appear

in Fig. 3 for the range of 0� < hc < 90� (beyond this range,

and even for larger cap angles less than 90�, the use of

ac ¼ a sin h is less meaningful). The overlaid dashed lines

indicate the corresponding end correction values for an infi-

nitely baffled circular piston and an unbaffled semi-infinite

circular pipe.
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The end correction remains bounded by these two values.

It obtains a maximum value as hc ! 0� equal to that of the

baffled circular piston. The spherically baffled piston’s end

correction approaches its infinitely baffled counterpart rap-

idly; it is not until hc < 3� that the end correction is greater

than lsb=ac ¼ 0:8. Consequently, when applying lumped-

element modeling, an infinitely baffled assumption may only

be reasonable for very small pistons relative to the source’s

total geometry or for baffles with very little curvature.

The minimum value over this range is lsb=ac � 0:6167

at an angle of hc � 50:5�. This value is slightly higher than

that of the unbaffled semi-infinite circular pipe, indicating

that the unbaffled semi-infinite circular pipe’s end correction

may be a reasonable lower limit in many practical

applications.

IV. CONCLUSIONS

This Letter explores the value of the end correction of a

radially vibrating cap on a sphere. The end correction ranges

from zero to the sphere’s radius over increasing cap half-

angle. The ratio of the end correction to the spherical-cap’s

radius remains bounded between that of an infinitely baffled

circular piston and an unbaffled semi-infinite circular pipe.

In particular, as the cap radius approaches zero, this ratio

takes on a value corresponding to that of an infinitely baffled

circular piston. The results of this work will assist in more

realistically modeling the radiation impedance from sources

with finite geometries.
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