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Abstract – Obtaining high-resolution, spherical phoneme-dependent directivities for voice radiation is bene-
ficial for numerous acoustics applications. This work reports on a spherical interpolation method based on
two interleaved measurements using a regularized least-squares fit with reference data. Maximizing the spher-
ical correlation between previously reported results and measured data determines the regularization hyper-
parameters to ensure physical solutions. While the resultant spherical directivity patterns show similarities
to time-averaged results, distinct radiation characteristics appear, particularly in the range of 630 Hz to 2 kHz.
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1 Introduction

Voice directivity data is essential in applications such as
telecommunications [1] or room acoustic design [2]. Over
the decades, researchers have employed numerous measure-
ment techniques to obtain increasingly finer resolutions
approaching compatibility with standardized resolutions
for loudspeakers [3] that are commonly employed in archi-
tectural acoustics simulation packages [4, 5]. Although
initial efforts often employed a single moving microphone
[6, 7], most modern techniques make use of rotations of
microphone arrays or rotations of subjects within micro-
phone arrays to leverage higher-resolution, spherical or
partial-spherical results [8–12].

Often, the measured data is incompatible with stan-
dardized resolutions employed in applications because it is
either (1) measured over an entire spherical surface but
with insufficient spatial resolution or (2) measured with
sufficient spatial resolution but only over a partial spherical
surface. Both cases require some form of data interpolation
to estimate unmeasured values. More recent works have
considered interpolation methods for the former case
[13, 14]; the present work reports on a method for the latter.

Researchers often apply least-squares fits to measured
data for interpolating spherical directivities using spherical
harmonic expansions [15]. However, when measurement
constraints lead to unsampled regions, such as below the
talker’s legs, a least-squares fit may lead to spurious radia-
tion lobes in this region. Applying incorrect directional data
to applications such as geometrical acoustics modeling [16]

or determining optimized microphone placements [17] can
lead to incorrect results. Regularized least-squares fits have
been employed to handle this so-called “polar gap” problem.
For example, Zotkin et al. [18] applied Tikhonov regulariza-
tion to estimate spherical harmonic expansion coefficients
in order to interpolate HRTF measurements with a polar
gap. Analysis of L-curves [19] determined the amount of
regularization. Aussal et al. [20] later applied a weighted
Tikhonov regularization to HRTF interpolation using a
fixed amount of regularization but over varying spherical
harmonic expansion degrees. Regularized least-squares fits
have also been applied to directivity measurements, such
as for guitar amplifiers [21].

However, several aspects of the application of regular-
ized least-squares fits to spherical harmonic expansions of
voice directivity remain unresolved. For example, no work
has directly evaluated the benefits or drawbacks of
weighted and unweighted Tikhonov regularization. Addi-
tionally, while the amount of regularization determined
by an L-curve may be a good initial choice, much is already
known about voice radiation through previous research. If
and how this data could be leveraged to determine
improved weighted Tikhonov regularization or even be
incorporated into the regularization remains unexplored.
This work reports on the application of regularized least-
squares fits to producing spherical directivities from two
interleaved sparse measurements. A spherical correlation
coefficient helps inform regularization parameters to ensure
physically meaningful interpolation. The resultant pho-
neme-dependent spherical directivities show similarities
with previously published phoneme-averaged results while
highlighting unique radiation features of individual
phonemes.*Corresponding author: samuel.bellows11@gmail.com
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2 Methods
2.1 Measurement system

The voice directivity measurement system consisted of a
rotating array in the anechoic chamber of the l’Institut de
Recherche et Coordination Acoustique/Musique (IRCAM).
As suggested by Figure 1, the measurement system
employed 24 microphones equally spaced on a semi-circular
arc. Microphone placement incorporated an azimuthal
angle spacing of D/ = 7.5� with an initial offset from
/ = 0� of D//2 = 3.75�. A motorized arm attached to
the array enabled rotations to elevation angles 0 from
�45� to 90�. A fixed far-field microphone served as reference
microphone for normalization between repeated captures of
the measurement system.

The rotatable chair, fixed at the array origin, allowed
the subject to sit in two configurations. In the first, the
talker faced the center of the array arc, while in the second,
the talker faced the end of the array arc. In both configura-
tions, lasers assisted in exactly aligning the subject’s mouth
to the geometric array center. In each configuration, 14 ele-
vation angle steps of D0 = 10� from�45� to 85� swept out a
partial spherical region, producing a single dataset. Addi-
tional measurements at 0 = 0� and 0 = 90� facilitated
polar-plane comparisons. Each configuration produced 336
unique measurements points, plus the polar-plane measure-
ments. Incorporating both datasets and assuming symme-
try across the median plane led to a total of 1,008 unique
sampling positions over the sphere (see Fig. 2). During
the measurement sequence, the talkers repeated select pho-
nemes for several seconds, repeated twice to evaluate consis-
tency. Additional information on the measurement system,
procedure, and calibration are available in references
[10, 11].

2.2 Computation of directivities

Because subjects cannot exactly repeat spoken passages
or utterances with each measurement repetition, adequate
compensation procedures must be employed. Narrowband
data processing followed the same normalization procedure
as used in [12]. First, under the assumption of linearity
between the reference microphone signal x(t) and array
microphone signal y(t), frequency-response functions
(FRFs) Huv for the uth elevation angle rotation and the
vth array position derived from the cross-spectral densities
between the array and reference microphone Gxy,uv and
the autospectral densities of the reference microphone
Gxx,u as

Huv fð Þ ¼ Gxy;uv fð Þ
Gxx;u fð Þ ; ð1Þ

where f is the frequency. The FRFs represent the ratio of
signal energy at the array measurement positions relative
to and correlated with the signal energy at the reference
microphone. However, summation into frequency bands
requires summation of radiated energies, not ratios. Con-
sequently, a narrowband estimate of the coherent output
power followed as [12]

Y uv fð Þ ¼ Gxx;ave fð ÞjHuv fð Þj2 ð2Þ
where the averaged input autospectrum was

Gxx;ave fð Þ ¼ 1
U

XU
u¼1

Gxx;u fð Þ; ð3Þ

with U = 24 representing the total elevation angle cap-
tures. The coherent output power represents the radiated
energy at the array microphone positions using a constant
input excitation equal to the average over all 24 elevation
angle captures.

The coherence follows from the spectral estimates as

c2uvðf Þ ¼
jGxy;uvðf Þ

��2
Gxx;uðf ÞGyy;uvðf Þ ð4Þ

so that the signal-to-noise ratio (SNR) at a given fre-
quency may be calculated as

Figure 1. Directivity measurement system including the rotat-
ing arc, reference microphone and rotating chair.

Figure 2. Sampling positions produced from the front, side,
and reflected side configurations.
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SNRuvðf Þ ¼ 10log10
c2uvðf Þ

1� c2uvðf Þ
: ð5Þ

Finally, energetic summation over respective broadband
ranges fb produced magnitude 1/3rd octave band directivity
functions

Duvðf Þ ¼
X
f2fb

Y uvðf Þ
 !1=2

ð6Þ

with respective beam patterns Buv(f) defined as

Buv fð Þ ¼ 20log10Duvðf Þ: ð7Þ
The square-root in equation (6) appears because directivity
functions are not typically defined in terms of energetic
quantities (see Eq. (23)).

2.3 Regularized interpolation

Spherical harmonic expansions of directivity data are
commonly employed in spatial audio applications. The
expansions allow data interpolation, smoothing, and com-
pact representations. The irregularity of the combined sam-
pling positions over the sphere and the uneven sampling
density precludes the use of spherical quadrature rules
and requires a least-squares fit to the data. Additionally,
the sparse sampling in the region 0 < �45� necessitates reg-
ularization to avoid spurious and non-physical radiation
lobes [18, 21].

A spherical harmonic expansion of a directivity function
may be expressed as

Dðh;/Þ ¼
X1
n¼0

Xn
m¼�n

amn Y
m
n ðh;/Þ ð8Þ

where am
n are the expansion coefficients, h is the polar

angle (h = p/2 � 0), and Ym
n ðh;/Þ are the spherical har-

monics of degree n and order m. Truncating the infinite
expansion to degree N and organizing a system of equa-
tions for each of the Q sampling positions yields

Ya ¼ dþ e ð9Þ
where

Y ¼

Y 0
0ðh1;/1Þ Y �1

1 ðh1;/1Þ � � � Y N
Nðh1;/1Þ

Y 0
0ðh2;/2Þ Y �1

1 ðh2;/2Þ � � � Y N
Nðh2;/2Þ

..

. ..
. . .

. ..
.

Y 0
0ðhQ;/QÞ Y �1

1 ðhQ;/QÞ � � � Y N
NðhQ;/QÞ

2
666664

3
777775;

ð10Þ

a ¼

a00
a�1
1

..

.

aNN

2
66664

3
77775; ð11Þ

d ¼

Dðh1;/1Þ
Dðh2;/2Þ

..

.

DðhQ;/QÞ

2
66664

3
77775; ð12Þ

and e is a Q � 1 vector containing the least-squares errors
(residuals). Constructing the data vector d requires com-
bining both datasets. However, because Gxx,ave(f) differs
for the front-facing and side-facing datasets, one dataset
must be normalized according to the difference in the ref-
erence microphone level between the two different
measurements.

The unsampled area below the talker (polar gap) is an
unconstrained region. Without regularization, the least-
squares fit that minimizes

JLSðaÞ ¼ jjYa� djj2 ¼ jjejj2 ð13Þ
will attempt to reduce errors at the Q sampling positions
with no regard to the expansion in the unconstrained
region. To constrain the solution, previous works have
applied weighted Tikhonov regularization, which adds
an additional penalty based on the magnitude of the
expansion coefficients as

JT að Þ ¼ jjYa� djj2 þ kjCajj2; ð14Þ
where C is a weighting matrix applied to the expansion
coefficients a. In the case of unweighted Tikhonov regular-
ization, such as in [18], C = I, the identity matrix. The
positive scale factor k determines the strength of the reg-
ularization; in the case k = 0, one obtains the original
least-squares solution. The expansion coefficients become
(see Eq. (2) of [22])

aT ¼ ðYHYþ kWÞ�1YHd; ð15Þ
where W = CH C. This formula gives the least-squares
solution (see Eq. (3.34) of [15])

aLS ¼ ðYHYÞ�1YHd ð16Þ
as k ? 0.

For sources with documented radiation characteristics,
an alternative addition to regularization is to add a penalty
term based on the weighted difference between the newly-
obtained and previously-known data as

JTDðaÞ ¼ jYa� dj jj2 þ kjjCða� a0Þjj2: ð17Þ
where a0 is the spherical harmonic expansion coefficients
of a reference dataset. This form of regularization conse-
quently minimizes errors with respect to differences
between measured and expanded values and differences
between measured and previously gathered data. This
approach has not been applied previously to interpolating
voice directivity functions. The expansion coefficients
become (see Eq. (2) of [22])

aTD ¼ ðYHYþ kWÞ�1ðYHdþ kWa0Þ: ð18Þ
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In this form of regularization, as k ? 0 one obtains the
least-squares solution while as k ? 1 one obtains
aTD = a0. Additional, setting a0 to zero yields the
weighted-Tikhonov solution used in previous works; this
case represents when no a-priori information is available.

2.4 Comparison of weighting matrices

Even with a given set of measurements d and a refer-
ence directivity dataset a0, application of the regularized
least-squares fit requires judicious choice of weighting
matrixW, the regularization strength k, and the maximum
degree spherical harmonics N. While each of these choices is
non-trivial and can lead to different results, previous works
have varied on their approaches and implementation of the
regularization. This section first clarifies advantages and
drawbacks of different weighting matrices.

The weighting matrix W determines how strongly to
penalize the magnitude of different terms appearing in a.
The unweighted choice (W = I, “white noise” assumption)
applied in [18, 21] represents the case where all expansion
coefficients should be penalized equally. This assumption
is a reasonable choice when little is known about the prob-
lem. This weighting is successful at removing the large radi-
ation lobe appearing in the polar gap region compared to
the unregularized case [18, 21].

However, knowledge of the physical problem may
inform a choice of weighting matrix to improve the result
in the unconstrained region. In order to obtain smoother
solutions, Aussal et al. [20] instead applied a weighting
based on the spherical harmonics’ eigenvalues as

W ij ¼ ð1þ nðnþ 1ÞÞdij ð19Þ
with n the degree of the associated spherical harmonic and
dij the Kronecker delta. This second-order (/ n2) penalty
strongly discourages the use of coefficients with high n
that correspond to large spatial variations. Because the
spherical harmonic expansions of sound radiation and
scattering exhibit low-pass behavior [18, 23], penalizing
higher-degree terms would appear beneficial compared
to using an unweighted approach. Nonetheless, Aussal
et al. [20] did not provide a direct comparison between
the weighted and unweighted results.

To illustrate how each of the weighting matrices influ-
ence the final result, Figure 3 plots median plane directivi-
ties for the phoneme /a/ in the 1 kHz 1/3rd octave band
for three different expansion degrees, N = 4, N = 8, and
N = 16. In each case, L-curve analysis after [18] determined
the optimal value k. The talker faces the right towards the
90� marker so that the direction of maximum radiation in
this band is in the direction of the talker’s forehead.

Several important trends appear. First, across N, the
choice of weighting most significantly impacts the expan-
sion in the unconstrained region below the talker’s legs. In
the measured region, different weightings yield almost
exactly the same interpolated directivity results. However,
the results do vary among weightings in the polar gap

region. Qualitatively, the unweighted regularization, indi-
cated by solid red lines, shows the most variation in the
polar gap region, with a number of spurious radiation lobes
appearing which are not present, for example, in the previ-
ously published phoneme-averaged spherical results of [12]
plotted as thin dotted black lines. Increasing the expansion
degree N increases the number of lobes appearing in this
region. While the unweighted regularization has ensured
that the polar gap region does not become the primary radi-
ation lobe as is the case for the unregularized least-squares
results, the number of these smaller radiation lobes suggests
that the unweighted regularization is less ideal.

The weighted-regularization, shown as the dashed blue
line, successfully suppresses high spatial variations in the
unconstrained region. This allows the weighted result to
have better agreement with previously published results
for all cases of N in the polar gap region. This result empha-
sizes the strong influence of weighting matrix choice on
interpolated results in the polar gap region.

2.5 Hyper-parameter tuning

Besides the weighting matrix W, the regularized least-
squares fit requires choice of k and N. Previous works either
used a fixed value [20], ad-hoc determination [21], or
L-curve analysis [18] to determine k. Typically, source
geometry determined the choice for the truncation degree
N [18, 20]; previous works did not consider the relation
between N and k. However, knowledge of the physical prob-
lem suggests at two-step approach to setting k and N.

It is first beneficial to consider the behavior of the fit
based on varying hyper-parameter values. For very small
values of k, the regularized least-squares solution reduces
to the unregularized case which fits to the data well at
the measurement points (small value of ||Ya – d||2) but
may introduce spurious radiation lobes in the uncon-
strained region below the talker, resulting in a large value
of ||Ca||2. As k increases, the regularization favors expan-
sions using lower rather than higher-order terms (thus
decreasing ||Ca||2), which can remove spurious lobes in
the unconstrained region.

However, if k is too high, the solution becomes too
biased and the resultant pattern will poorly fit to the mea-
sured data points (||Ya – d||2 becomes unacceptably large).
Consequently, over increasing k, one anticipates a valley of
stability where optimal fitting results occur, simultaneously
obtaining both good agreement between the fit and the
measured data as well as the removal of any spurious radi-
ation lobes. L-curve analysis attempts to estimate this
valley by computing the curvature of a plot of ||Ca||2 versus
||Ya – d||2 for varying k [22]. The L-curve estimate repre-
sents the point which balances small reconstruction errors
with a well-constrained expansion a.

The maximum spherical harmonics degree N determines
the spatial complexity of the pattern. Directivity patterns
tend to become more complex at higher frequencies, requir-
ing a higher N over increasing frequency [24]. Too few terms
means that details in the pattern are smoothed or lost.
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In contrast, because the expansion coefficient’s behavior is
generally low-pass [23], adding additional coefficients above
a certain degree does not further benefit the expansion and
significantly increases the computational burden in wave-
based applications. Consequently, an optimal choice of
the hyper-parameters N and k should (1) provide good
agreement between the fitted results and measured data,
(2) remove any unphysical radiation lobes in the polar-
gap region, and (3) avoid use of an unnecessarily high N.

The relationship between N and k remains unclear from
previous works. The use of weighted regularization, which
improves interpolated results in the polar gap region, also
penalizes high N. This choice smooths results and may
decrease the source order. While L-curve analysis provides
a rigorous approach to analyze the bias-variance tradeoff
for fixed N, it does not translate to how physically meaning-
ful the results are. For example, the unweighted fit using
L-curve optimized k appearing in Figure 3 had spurious
radiation lobes which do not appear in previous spherical
results. Proper analysis of optimal values of N and k conse-
quently requires further validation.

One approach to validate the interpolated results is a
comparison with previously published data. Let a0 be the
expansion coefficients of a known spherical voice directivity
function. Then minimizing an objective function based on a
normalized spherical correlation coefficient (see Eq. (1.88)
of [15]) as

JðN ; kÞ ¼ 1� aH
0 a

a0j jj jjjajj ð20Þ

selects the parameters N and k which minimize the differ-
ences between the known directivity a0 and the interpo-
lated directivity represented by a. Note that this
definition normalizes J so that when a0 / a, J = 0 while

when a0 \ a, J = 1. Because each speech subject and each
phoneme may have unique radiation patterns [12], the
optimal values of N and k associated with the minimum
of J do not necessarily correspond to optimal fitting
parameters of the measured subject. Nonetheless, this
approach provides complimentary insights into optimal
choices of N and k compared to L-curve analysis alone.

To illustrate the features of this objective function,
Figure 4a plots the objective function surface over the
hyper-parameter space for the case of unweighted regular-
ization (W = I). The reference data consists of phoneme-
averaged results averaged across three male and three
female talkers taken from [12]. The red squares appearing
over the objective function surface mark optimal values of
k givenN through L-curve analysis. For values of N approx-
imately greater than 5, the anticipated valley of stability
appears, with correlation deviations being less than
�20 dB. The L-curve optimal points fall into this valley,
and stabilize near a value of k � 0.5 above N = 10.

However, the optimal (N, k) pair selected by L-curve
analysis does not always correspond to the lowest possible
deviations between the reference directivity. For example,
an expansion at N = 7, k = 0.01 gives a correlation devia-
tion of less than �30 dB. Nonetheless, the L-curve results
do roughly correspond to regions of reduced deviations
between the reference data.

Using the weighted regularized fit yields a slightly differ-
ent objective function surface. Figure 4b shows results using
the weighted Tikhonov regularization. Again, for values of
N approximately greater than 5, the anticipated valley of
stability appears. However, the correlation deviations are
lower than for the unweighted case, reaching levels below
�40 dB. The region corresponds to values of k � 5. The
width of this narrow region with respect to k appears inde-
pendent of N as long as N is sufficiently high (N[� 5).

Figure 3. Median-plane comparisons between weighting matrices for voice directivity interpolations of the phoneme /a/ at the 1 kHz
1/3rd octave band using N = 4, N = 8, and N = 16 degree expansions. The dotted black line represents phoneme-averaged speech
results averaged across six talkers from [12].
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The L-curve points fall slightly below the region of low-
est deviations. Above N = 3, they consistently fall at a
value of approximately k � 0.5. Thus, with both weight-
ings, the L-curve analysis and objective functions suggest
that k may be chosen independent of N for a given fre-
quency. This behavior seen in J and the L-curve results sug-
gests a two-step approach to identify optimal values of k
and N. First, determine an optimal value for k based on a
high-degree expansion of the results. Then, using the fixed
value of k, increase N until obtaining desired convergence.

This is in contrast to previous works, which used source
geometry-based formulas to estimateN and then attempted
to find an optimal value for k.

Figure 5 demonstrates convergence over N for fixed k for
the case of the vowel /a/ at the 1.6 kHz 1/3rd octave band.
For a fixed value of k = 0.5, a directivity factor function
deviation level LQ [25]

LQðf Þ ¼ 10log10ð1þ rQðf ÞÞ ð21Þ
where

rQðf Þ ¼
Z 2p

0

Z p

0
jQðh;/; f Þ � Qrefðh;/; f Þj sin hdhd/ ð22Þ

and the directivity factor function is defined as [24]

Qðh;/; f Þ ¼ 4pjDðh;/; f Þj2Z 2p

0

Z p

0
jD h;/; fð Þj2 sin hdhd/

ð23Þ

monitors the convergence over increasing N. An N = 35
degree expansion serves as the reference directivity factor
function Qref.

Beginning at a value of LQ � 2.9 dB for an N= 0 expan-
sion, the deviation rapidly decreases to below LQ = 0.5 dB
by an N = 5 expansion. After this point, the expansion con-
verges more slowly, obtaining values of less than LQ = 0.25
dB by an N = 12 expansion. This elbow point suggests that
an N = 5 expansion captures most of the primary direc-
tional features when using the weighted regularization at
this frequency. Of course, choosing a weighting matrix
which penalizes higher-order terms limits the amount of
spatial detail possible and possibly lowers the maximum
N necessary compared to the unweighted case.

The four directivity balloons appearing in Figure 5b–5e
illustrate these differences over increasing expansion degree
N. The N = 3 (Fig. 5b) expansion has the same direction of
maximum radiation as the higher-degree expansions but
does include secondary radiation lobes corresponding to
the regions to the talker’s sides. By the N = 6 expansion
(Fig. 5c), only minor differences appear between the
other higher-degree expansions. Although the N = 10 and
N = 15 expansions afford slightly more details, the changes
are difficult to observe without careful inspection.

2.6 Impact of reference dataset

The quality of interpolation largely depends on the
underlying assumptions made. For example, when interpo-
lating data over the polar gap region, enforcing an assump-
tion of smoothly varying data by applying a weighting
matrix significantly decreased deviations compared to the
unweighted case as seen in Figure 3. Another tool not con-
sidered in previous works for improving the interpolation
results in the polar gap region is to apply a reference dataset
using equation (18).

Figure 6 plots interpolated results for the phoneme /a/
at the 400 Hz 1/3rd octave band using a weighted
Tikhonov regularization, an N = 15 expansion, and k = 1.

Figure 4. Objective function [20log10(J)] plotted over the
hyper-parameter space for the vowel /a/ in the 1 kHz 1/3rd
octave band using the (a) unweighted and (b) weighted
regularization.
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At this frequency, a small diffraction lobe appears below the
seated talker’s body in the spherical reference dataset
(Fig. 6c and dotted blue line in Fig. 6d). However, because
the measurements excluded this region, the regularized
interpolation without applying previous data simply pro-
vides a smooth interpolation below the talker (Fig. 6a and
solid red line in Fig. 6d).

When the regularization uses the reference dataset
(Fig. 6b) and dashed green line in Figure 6d, two important
trends appear. First, in the measured region, both regular-
ized results almost exactly agree, with less than 0.5 dB devi-
ations between their median plane polar plots. However, in
the polar gap region, the regularized interpolation using the
reference dataset follows the beam pattern of the reference
dataset. Thus, this form of regularization allows one to
“blend” both newly and previously measured results, using
the new information when available and relying on previous
data when information is unavailable. Clearly, the results of
this form of interpolation will largely depend on the reliabil-
ity of the reference dataset used. This approach is beneficial
in the present work because directional data below the

talker is unavailable; the technique may be less useful in
the case of a full-spherical measurement.

3 Results

This section presents select spherically interpolated, pho-
neme-dependent voice directivities. In all cases, N = 15,
k = 1, and a0 is the phoneme-averaged results from [12].
Figure 7 presents select directivity results for the phonemes
/a/, /i/, /o/, /m/, and /n/ for the 160 Hz, 315 Hz, 500 Hz,
and 1 kHz 1/3rd octave bands. At 160 Hz, the sound radia-
tion is nearly identical across all phonemes and is quasi-
omnidirectional. Radiation patterns at 315Hz begin to show
very slight differences between phonemes, such as between
/a/ and /n/. Nonetheless, they all share similar features
such as the maximum direction of radiation falling slightly
below the talker’s mouth, and secondary lobe appearing
directly above the talker, and some reduced levels of radia-
tion behind the talker.

At 630 Hz, more distinct differences between phonemes
appear. In general the differences are most distinct in the

Figure 5. (a) Directivity deviation levels LQ of directivities producing with increasing maximum expansion degree N relative to an
expansion incorporating an N = 35 degree expansion. Directivity balloons expanded using up to (b) N = 3, (c) N = 6, (d) N = 10, and
(e) N = 15 degree expansion. In all cases, the regularization parameter k = 0.5.

Figure 6. Directivity results for the phoneme /a/ at the 400 Hz 1/3rd octave band using N = 15, k = 1 and regularizing with (a) no
reference dataset (b) reference dataset from [12]. (c) Reference dataset from [12]. (d) Median plane polar results.
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region in front of and above the talker’s head. For example,
both /i/ and /n/ show reduced levels at 0 = 45� whereas
/m/ shows strong radiation in this direction. The phonemes
/a/ and /o/ appear more similar, although some minor dif-
ferences appear. More significant differences across pho-
nemes in this band are consistent with the polar plane
results in [10, 11].

At 1 kHz, the primary direction of radiation has moved
to the direction above the talker’s head. Previous studies on
voice radiation, including [12, 26] have also shown this
trend. Similar to the 630 Hz band, the phonemes /a/ and
/o/ appear most similar, while, /i/, /m/, and /n/ likewise
show some similarities. Unlike at 630 Hz, the differences
between /m/ and /n/ are not as distinct.

Differences between phonemes continue to arise at
higher frequencies (Fig. 8). At 1.25 kHz, /a/ and /i/ have
the maximum direction of radiation oriented at the highest
angle. In contrast, /o/, and especially /m/ and /n/ have the
principal radiation lobe slightly lowered. In all cases, the

radiation is slightly above the mouth axis with secondary
lobes appearing on the side. At 1.6 kHz, /a/ and /i/ show
similar radiation patterns, although the size of the side lobe
is less apparent for /i/ than for /a/. The phonemes /o/,
/m/, and /n/ are less directional and appear to have stron-
ger radiation from the sides. At 2 kHz, all phonemes appear
to have at least two lobes, one slightly above the mouth axis
and one slightly below. The effect is most pronounced for
the phoneme /o/, although strongly visible in /i/ and
/m/ as well. Multiple lobes above 1 kHz also appear also
in the results of [12, 25].

By 2.5 kHz the radiation appears directed forward,
although /a/ appears more similar to the radiation pattern
of /o/ at 2 kHz. The phoneme /i/ has a narrower beam,
while /o/, /m/, and /n/ have wider lobes. These few select
results show that while the radiation patterns of many pho-
nemes appear similar, distinct differences arise, particularly
in the region 630 Hz to 2 kHz. These same trends were
observed in polar-plane results appearing in [10].

Figure 7. 1\3rd-octave-band directivities for the phonemes /a/, /i/, /o/, /m/, and /n/ for the 160 Hz, 315 Hz, 630 Hz, and 1 kHz
bands.
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4 Analysis
4.1 Signal-to-noise ratio

Different phonemes produce different amounts of energy
in different frequency bands. Consequently, determining
meaningful phoneme-dependent directivities requires care-
ful analysis of SNR to ensure adequate radiated energy.
Figure 9 plots the SNR for three vowels /a/, /i/, /o/, and
three consonants /f/, /t

R
/, /n/ over the range of 80 Hz

to 10 kHz. For these voiced phonemes (the three vowels and
/n/), the highest SNR ratio of around 30 dB occurs at the
talker’s fundamental frequency near 100 Hz. The SNR
levels follow the tonal nature of voiced sounds, being high-
est at integer multiples of the fundamental and lowest in
between partials, where there is little radiated sound. For
these four phonemes, the SNR levels slowly decrease to
around 15 dB by 3 kHz, after which they rapidly drop off
above 4 kHz to around �10 dB.

The unvoiced phonemes show markedly different trends
than the voiced ones. Overall, their SNR levels are lower

than for the voiced phonemes, with the SNR levels more
evenly distributed over frequency. The softer phoneme /f/
has its highest SNR levels of around 6 dB in the range of
300 Hz to 800 Hz, whereas the phoneme /t

R
/ has its highest

SNR levels of around 15 dB from 2 kHz to 4 kHz. For all
phonemes, the SNR closely reflected the levels of the aver-
aged input autospectrum Gxx,ave(f). These results highlight
that confidence in the produced voice directivity patterns
varies over frequency and over phoneme, as different pho-
nemes produce energy over different bands.

4.2 Repeatability

Considering the repeatability of subjects when using a
repeated rotating array protocol is essential as subjects can-
not exactly repeat the same excitation for each repeated
capture. The proposed method is grounded in approximat-
ing voice radiation as a linear, time-invariant system for the
same utterance. While typical sound pressure levels pro-
duced during normal speech do not merit consideration of

Figure 8. 1\3rd-octave-band directivities for the phonemes /a/, /i/, /o/, /m/, and /n/ for the 1.25 kHz, 1.6 kHz, 2 Hz, and 2.5 kHz
bands.
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non-linear acoustic propagation effects, the time-varying
features of the moving mouth are more problematic. For
each utterance, the subject may not exactly reproduce the
same mouth shape for a given phoneme, which could alter
levels, spectral composition, and even directivity patterns.

During the measurement sequence, the subjects
repeated some of the phonemes twice, meaning that com-
parisons between spherical directivities produced from each
of the two repetitions provides a means to assess measure-
ment variance. Figure 10 plots LQ values over frequency
between the two repetitions for six different phonemes,
/a/,/i/,/o/, /f/, /t

R
/ and /m/, based on the spherically

interpolated results. For the voiced phonemes, deviations
between the two repetitions remained below 0.5 dB up to
500 Hz. Above 500 Hz, the deviations begin to increase,
although none exceed 1 dB by 4 kHz. Additionally, all
voiced phonemes except /a/ remained below 1 dB up to
at least 10 kHz. The frequency-averaged value from
100 Hz to 10 kHz was 0.4 dB, 0.3 dB, 0.3 dB, and 0.3 dB
for /a/, /i/, /o/, and /m/, respectively.

The unvoiced phonemes /f/ and /
R
/ had lower repeatabil-

ity compared to the voiced phonemes, with frequency-
averaged values of 0.6 dB and 0.6 dB, respectively. As
suggested by the SNR plots, these phonemes radiated less
signal energy and thus had lower coherence values. Regions
of lower SNR correspondwell with regions of higher deviations
between the two repeated takes. This trend highlights the
important relationship between radiated levels, coherence,
and repeatability of directivity results, whether they reply to
measurement protocols using single or multiple captures.

While it may seem surprising that deviations remained
low, one should remember that the size of an acoustic wave-
length relative to geometrical uncertainties is very small for
frequencies of interest. For example, even at 10 kHz, the
associated 3.4 cm wavelength is just approaching the size
of the entire mouth. Geometric differences in mouth shape
between repeated utterances of the same phoneme should
be on the order of a few millimeters. Consequently, one can-
not anticipate dramatic changes in directivity patterns due
to slight variations in mouth size when producing the same
phoneme. Of course, these variations may be more signifi-
cant when considering the effects of co-articulation or for
varying levels of loudness, which is beyond the scope of
the present work.

Another factor influencing the low deviation levels is the
use of the weighted regularization to produce the spherical
results. This regularization strongly penalizes higher-order
terms, which in effect smooths directivities. Consequently,
the regularization likely removes smaller spatial variations
and finer radiation details, leading to lower deviations com-
pared to those that would be produced by directly compar-
ing levels at the measurement positions.

4.3 Comparison with previous work

Another important validation of directivity data is com-
parisons with previously published results. Figure 11 plots
values of LQ over frequency between each phoneme’s direc-
tivity and that of the time-averaged results of [12]. Below
500 Hz, deviations between phonemes and the time-
averaged speech remain less than 1 dB for the voiced pho-
nemes. For the phonemes /i/ and /m/, the deviations
quickly rise at the 630 Hz band, although for /a/ and /o/
the deviations remain less than 1.5 dB. This result is inter-
esting because in Figure 7, /i/ and /m/ have strong differ-
ences between those of /a/ and /o/ in the 630 Hz band.

Above 1 kHz, the deviations steadily rise for all
phonemes, although none increase beyond 3 dB. The

Figure 10. Directivity factor deviation level LQ between
directivities produced from two repetitions of the same phoneme.

Figure 9. Signal-to-noise ratios over frequency for three vowels
and three consonants.
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frequency-averaged results were 1.1 dB, 1.3 dB, 1.1 dB, and
1.6 dB, for /a/, /i/, /o/, and /m/, and 1.3 dB and 1.6 dB
for /f/ and /t/, respectively. However, because the interpo-
lations incorporated the reference set, these levels are
slightly biased; frequency-averaged values when not using
the reference set in the interpolation increased the deviation
levels by roughly 0.1–0.2 dB. Thus, while differences
between exist between individual phonemes, particularly
above 500 Hz, the results remained similar to phoneme-
averaged values.

5 Conclusions

This work reported on a method for interpolating direc-
tivity data measured on two interleaved measurements over
the sphere using a regularized least-squares approach. It
determined than in interpolated voice directivities, the
weighted Tikhonov regularization performed better than
the unweighted Tikhonov regularization in the polar gap
region. Incorporation of reference data into the regulariza-
tion likewise improved interpolated results in this region.
The work proposed a two-step method to determine the
amount of regularization and maximum spherical harmonic
degree by comparing fitted results to previously published
data. Future works includes detailed correlation and clus-
tering analysis between the directivities of distinct pho-
nemes. Additional work will also analyze the perceptual
relevance of incorporating phoneme-dependent directivities
in virtual acoustics simulations.
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