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The structural modes of gamelan gongs have clear connections with the gongs’ far-field radiated patterns. 
However, the instruments’ unique geometry and modal characteristics limit the applicability of simple the-
oretical models, such as a radially vibrating cap on a sphere, for understanding their radiation. This work 
develops and applies two different models, a vibrating cap on a spherical shell with a circular aperture and a 
vibrating cap with imposed mode shapes, to better understand the gongs’ directional characteristics. The 
models agree with acoustical measurements, predicting dipole and cardioid-like patterns and lobes formed 
from constructive and destructive interference.
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1. INTRODUCTION

Gongs play an essential musical role in the Balinese and Javanese gamelan. The instruments’ construc-
tion and tuning processes strongly influence their unique structural and acoustic properties.1, 2 Several gongs
exist within the Balinese gamelan, each with special musical functions related to these properties, such as
the strong beating effects evident in the ageng gongs.3 Beyond their unique structural acoustics, the gongs
have complex radiation patterns.4, 5 However, few existing theoretical models can predict the distinctive
directional characteristics.

Theoretical models are important tools for understanding directivities. Researchers have employed mod-
els such as infinitely baffled flat pistons and their variants,6–9 unbaffled flat pistons,6, 10 and rigid spheres with
vibrating caps11–13 to better understand sound radiation from loudspeakers,6, 14, 15 the human voice,16–18 and
other sources. For several reasons, gamelan gongs present a unique challenge for these classical models.
First, the gongs have a side rim that extends a significant distance behind the gong face, relative to its radius.
This structural characteristic forms a cavity-like geometry that breaks the reflectional symmetry about the
face plane. Interactions between the gong’s face and back opening preclude the use of infinitely baffled
models, while the lack of reflectional symmetry limits the applicability of unbaffled flat piston models. Ad-
ditionally, the directional radiation is highly dependent on the gong’s modal response,5 meaning effective
models must incorporate varying surface velocity distributions. These features limit the utility of commonly
applied theoretical models in predicting gamelan gong radiation patterns.

This work presents two theoretical models that help describe the radiation. Both are based on spherical
models to avoid the shortcomings of flat pistons and their counterparts. The first is a radially vibrating
cap on a rigid spherical shell with a circular aperture. This model is beneficial for understanding how the
cavity-like gong geometry influences its directional response. The second model comprises a vibrating cap
with imposed mode shapes on a rigid closed sphere. This model explains how varying modal patterns on the
gong’s surface impact its directivity. Comparisons between modeled and measured directivities highlight
the effectiveness of applying these straightforward models to better understand the instrument’s radiation
characteristics.

2. THEORETICAL MODELS

A. RADIALLY VIBRATING CAP ON A SPHERICAL SHELL WITH A CIRCULAR APERTURE

The gong’s rim or circular side wall presents a challenging aspect for modeling the instrument’s radia-
tion. The geometry limits the applicability of models incorporating baffled or unbaffled flat plates because
it breaks symmetry assumptions about the gong’s face. Dissimilar radiation from the gong’s front and back
interact to create distinctive radiation patterns.

As suggested by Fig. 1, a rough approximation to the gong’s geometry is a radially vibrating cap set
on a rigid spherical shell with a circular aperture. While this model treats the gong’s face as curved rather
than flat, it does incorporate the open-back topology. Consequently, this model provides insights into the
interactions between the vibrating surface and the open aperture created by the gong’s rim.

This geometric configuration requires numerical or semi-analytical approaches for arbitrary frequen-
cies.19, 20 However, a low-frequency approximation follows by superposing two radially vibrating caps on a
rigid sphere. The first cap, oriented toward (ϑc, φc) and located on the boundary Γc, has normal velocity uc
and half angle (i.e., edge angle from center) µc. This cap represents the source’s radiation if the spherical
aperture is closed. The second cap, oriented toward (ϑa, φa) and located on the boundary Γa, has normal ve-
locity ua and half-angle µa. Ensuring the continuity of the spatially averaged pressure and volume velocity
across Γa will determine this cap’s normal velocity.
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Figure 1: Diagram of a radially vibrating cap on a spherical shell with a circular aperture. The red
regions indicate the vibrating portion while the blue regions indicate the rigid portion of the spherical
shell.

The pressure produced by a radially vibrating cap on a rigid closed sphere of radius a is6, 11

p(r, θ, ϕ, k) = −iz0

∞∑
n=0

n∑
m=−n

Um
n

h
(2)
n (kr)

h
(2)′
n (ka)

Y m
n (θ, ϕ), r > a, (1)

where k is the wavenumber, z0 = ρ0c is the characteristic specific acoustic impedance, h(2)n are the spherical
Hankel functions of the second kind (for eiωt time dependence), and Y m

n are the spherical harmonics of
degree n and order m. The sphere’s normal surface velocity expansion coefficients Um

n are

Um
n = u0B

m
n (µ, ϑ, φ), (2)

where u0 is the cap normal velocity, µ is the cap half-angle, and (ϑ, φ) is the direction about which the cap
is directed. The coefficients

Bm
n (µ, ϑ, φ) = Bn(µ)

4π

(2n+ 1)
[Y m

n (ϑ, φ)]∗ (3)

represent the expansion of a unit-amplitude cap of half-angle µ oriented toward (ϑ, φ) and6, 11

Bn(µ) =

{
1
2(1− cosµ), n = 0
1
2(Pn−1(cosµ)− Pn+1(cosµ)), n > 0

, (4)

are the Legendre polynomial expansion coefficients for a unit amplitude cap of half-angle µ oriented toward
(ϑ, φ) = (0◦, 0◦).

Returning to the two-cap superposition model, the pressure produced by the vibrating cap at Γc becomes

pc(r, θ, ϕ, k) = −iz0

∞∑
n=0

n∑
m=−n

ucB
m
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h
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Y m
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while the pressure produced by the vibrating aperture cap becomes

pa(r, θ, ϕ, k) = −iz0

∞∑
n=0

n∑
m=−n

uaB
m
n (µa, ϑa, φa)

h
(2)
n (kr)

h
(2)′
n (ka)

Y m
n (θ, ϕ), r > a. (6)
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For consistency with the measurement orientation presented later, (ϑc, φc) = (90◦, 0◦) and (ϑa, φa) =
(90◦, 180◦) in this work. The gong’s geometry determines the cap half-angles µc and µa. Applying the
continuity boundary conditions across the aperture Γa yields the aperture normal velocity ua in terms of
known parameters and the total pressure pt = pc + pa of the source configuration.

Solving for the aperture cap velocity ua requires the spatially averaged pressure jump across Γa due to
the vibrating cap at Γc and the vibrating cap at Γa. By letting Uc = uc2πa

2(1 − cosµc) be the volume
velocity of the vibrating cap, Ua be the volume velocity of the aperture opening, and ⟨p⟩Γa be the spatially-
averaged pressure over the aperture surface Γa for the closed sphere, one finds that these values relate
through self and mutual impedances as

⟨p⟩±Γa
= UaZ

±
A,aa + UcZ

±
A,ac, (7)

where ZA,aa is the self impedance of the aperture cap and ZA,ac is the mutual impedance between the
aperture and vibrating caps. The ± symbol indicates that the expression holds for both the exterior (+) and
interior (-) sides. The self and mutual impedances are21

ZA,aa =
−i4πa2z0

S2
a

∞∑
n=0

γ±n (ka)
Bn(µa)

2

(2n+ 1)
(8)

and
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−i4πa2z0

SaSc
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n=0

(−1)nγ±n (ka)
Bn(µa)Bn(µc)

(2n+ 1)
, (9)

where

γ+n (ka) =
h
(2)
n (ka)

h
(2)′
n (ka)

(10)

and

γ−n (ka) =
jn(ka)

j′n(ka)
. (11)

Applying continuity of the spatially averaged pressure ⟨p⟩+Γa
= ⟨p⟩−Γa

across the boundary yields

Ua = −Uc

(Z+
A,ac − Z−

A,ac)

(Z+
A,a − Z−

A,a)
. (12)

Approximating the aperture velocity ua as a constant so that it relates the aperture volume velocity as
Ua = ua2πa

2(1− cosµa) results in the expression

ua = − Uc

2πa2(1− cosµa)

(Z+
A,ca − Z−

A,ca)

(Z+
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. (13)

The superposition of the velocity expansion coefficients for both caps yields

Am
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4π
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Figure 2: Magnitude and phase of the aperture volume velocity for fixed principal cap volume velocity
over frequency.

so that the total pressure is

pt(r, θ, ϕ, k) =
∞∑
n=0

n∑
m=−n

Am
n h(2)n (kr)Y m

n (θ, ϕ), r > a. (15)

Figure 2 compares the aperture volume velocity Ua to the fixed cap volume velocity Uc as a function
of frequency for the case µc = µa = 18◦ and a = 1 m. At low frequencies, the velocity magnitudes are
equal but 180◦ out of phase, which leads to a strong dipole moment.10, 22 As the frequency approaches the
Helmholtz resonance frequency of the cavity, the magnitude of the aperture volume velocity peaks, and the
phase changes rapidly from being 180◦ out of phase to being nearly in phase. Higher volume velocity at the
aperture than at the principal cap leads to an increasing monopole moment and omnidirectional radiation at
resonance.22 Above the Helmholtz resonance frequency, varying cap and aperture volume velocity ratios
can lead to more complex radiation patterns.

Figure 3 plots the normalized far-field directivity of a radially vibrating cap on a rigid spherical shell with
a circular aperture having half angles µc = 45◦ and µa = 45◦. Balloon color and radius indicate the relative
level on a logarithmic scale. Although this model may not be beneficial for representing complex mode
shapes, it provides insights into the directional nature of a cavity-like geometry at low frequencies. First, the
radiation is primarily dipolar when ka is very small. As ka approaches the Helmholtz resonance frequency
of the cavity (ka ≈ 0.7 for this configuration), the directivity becomes increasingly omnidirectional due to
an increasing monopole moment. Above the resonance frequency, the directivity takes on more complex
patterns, including cardioid-like radiation. Additionally, radiation behind the aperture is more substantial
than in front of the configuration at some frequencies.

B. RADIALLY VIBRATING CAP ON A RIGID SPHERE WITH IMPOSED MODE SHAPES

Varying mode shapes present another challenge for modeling gamelan gong sound radiation. The dif-
ficulty of integrating the associated Legendre functions has limited theoretical spherical models to axisym-
metric radiation. Although some have contemplated extensions to nonaxisymmetric radiation, the solutions
are incomplete or require numerical integration.6, 12 This section describes a solution for a mode shape
imposed on a radially vibrating cap on a rigid sphere.
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Figure 3: Normalized far-field directivities of a radially vibrating cap on a rigid spherical shell with a
circular aperture and 45-degree half angles for (a) ka = 0.01, (b) ka = 0.3, (c) ka = 0.6, (d) ka = 0.8, (e)
ka =1.0, (f) ka = 1.5, (g) ka = 2.0, and (h) ka = 2.5.

Let µ be the cap half-angle and ΨN the desired mode shape. The normal surface velocity is then

uN (θ, ϕ) =

{
ΨN (θ, ϕ) θ ≤ µ

0 θ > µ
. (16)

The spherical harmonic expansion coefficients follow as

Um
n =

∫ 2π

0

∫ µ

0
Ψ(θ, ϕ) [Y m

n (θ, ϕ)]∗ sin θdθdϕ. (17)

While the expansion coefficients of Ψ may be difficult to evaluate analytically, consider the simplifica-
tion of constant-amplitude vibration

Ψ̃(θ, ϕ) = sgn(Ψ(θ, ϕ)), (18)

where sgn is the sign function. Figure 4 demonstrates this operation on the mode shapes of a clamped circu-
lar plate. The expansion coefficients of Ψ̃ readily follow by applying spherical-harmonic-domain masking
operations.

Consider two functions f(θ, ϕ) and g(θ, ϕ) defined over the sphere with respective spherical harmonic
expansion coefficients Fm

n and Gm
n . The expansion coefficients Um

n of the function u(θ, ϕ) = f(θ, ϕ)g(θ, ϕ)
follow from the spatial masking operator as23

Hm
n =

∞∑
p=0

p∑
q=−p

∞∑
s=0

s∑
t=−s

Λmqt
npsG

q
pF

t
s (19)

where

Λmqt
nps = (−1)m

√
(2p+ 1)(2s+ 1)(2n+ 1)

4π

(
p s n

0 0 0

)(
p s n

q t −m

)
(20)
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Figure 4: Effects of the sign function on the mode shapes of a clamped circular plate. Mode shapes for
(a) (0,1), (b) (1,1), (c) (2,1), and (d) (0,2) modes. Sign function applied to the mode shapes of the (e) (0,1),
(f) (1,1), (g) (2,1), and (h) (0,2) modes.

Figure 5: Illustration of using a spatial masking operator to create a (1,1) mode shape. (a) Cap func-
tion. (b) Masking function. (c) Expanded result of the spherical-harmonic domain multiplication of the
masking and cap functions.

and the matrix-like elements are the Wigner 3j symbols.23 For practical applications, one may express the
masking operator through matrix relations as

u = Bgf , (21)

where f and h are (N + 1)2 × 1 vectors containing the expansion coefficients truncated to degree N and
Bg is a (N + 1)2 × (N + 1)2 matrix containing the operator elements, which depend on the choice of
the masking function g. Reference 23 contains more details about this operator, its representation, and its
numerical evaluation.

Judicious choices for the functions f and g impose the desired mode shapes onto a spherical cap. For
example, Fig. 5 illustrates how one may impose the (1,1) mode shape depicted in Fig. 4 (b) via its simplifi-
cation shown in Fig. 4 (f) onto spherical a cap with half-angle µ = π/5. Choosing Fm

n = Bm
n (π/5, π/2, 0)

produces a spherical cap of half-angle µ = π/5 oriented along the x-axis as depicted in Fig. 5(a). Next,
choosing the masking function Gm

n = Bm
n (π, π/2, π/2)− Bm

n (π, π/2, 3π/2) divides the spherical surface
into two positive and negative constant-amplitude regions as shown in Fig. 5(b). Finally, spherical-harmonic
domain multiplication yields the desired surface velocity depicted in Fig. 5(c).
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3. RESULTS

A. VIBRATING CAP ON A SPHERICAL SHELL WITH CIRCULAR APERTURE

A spherical model of the gong’s radiation requires an estimate of the source’s equivalent radius ae and
cap half-angle µ. For a gong with face radius R and wall rim depth d, the equivalent cap half angle µ is

µ ≈ tan−1

(
2R

d

)
. (22)

The effective radius is more challenging. One could choose ae = R or ae = d/2, but these choices un-
derestimate and overestimate the cavity volume, respectively. A poor estimate of the cavity volume gives
an incorrect prediction of the Helmholtz resonance frequency, degrading the accuracy of the model’s pre-
dictions. An effective radius ae = (3/4R2d)1/3 based on a sphere with equivalent volume produced better
agreement, but ad hoc experimentation with various combinations of these three approaches determined that
an estimate based on

ae =
1

2

[
d

2
+

(
3

4
R2d

)1/3
]

(23)

yielded the best agreement between predicted and measured directivity results for two gongs.
Figure 6 compares two pairs of measured and modeled gamelan gong radiation patterns for the ageng

lanang gong (R = 0.41 m, d = 0.24 m, ae = 0.216 m, µ = 73.7◦). Reference 5 contains more details about
the measurement and data processing methods. Figures 6(a) and (c) show results for the (0, 1) axisymmetric
mode at 63 Hz. The radiation appears dipole-like, although, as in Fig. 3(b), it is in transition between
a dipole-like and monopole-like pattern. The directivity becomes less dipole-like for the (0, 2) mode at
130 Hz, as shown in Figs. 6(b) and (d). Although the (0, 2) mode has two anti-nodal regions that vibrate
out-of-phase with each other, the model’s prediction remains robust.

Figure 7 compares measured and modeled gamelan gong radiation patterns for the bebende gong (R =
0.25 m, d = 0.175 m, ae = 0.145 m, µ = 70.5◦). Figures 7(a) and 7(c) shows the results for the (0, 1)
axisymmetric mode at 144 Hz. As for the ageng lanang gong, the radiation is roughly dipole-like. However,
in contrast to the ageng lanang gong, the radiation appears more omnidirectional for the (0, 2) mode at 469
Hz, as shown in Figs. 7(b) and (d). These differences in directivity patterns partly result from differing
acoustic wavelengths relative to structural wavelengths. For the ageng lanang gong, the modal frequency
spacing is nearly a factor of two, leading to a beating phenomenon following a gong strike.3 In contrast, the
modal frequency spacing for the bebende gong is closer to a factor of three. This greater spacing appears
to place the modal frequency of the (0, 2) mode closer to the Helmholtz resonance of the gong’s cavity and
leads to more omnidirectional radiation.

The agreement between the measured and predicted directivities highlights the utility of applying simple
theoretical models to better understand radiation behavior. Typical models without an open cavity geom-
etry predict increasing directivity with increasing frequency.6, 11 In contrast, the proposed spherical model
predicts dipolar radiation at the lowest frequencies and decreasing directivity as frequency approaches the
Helmholtz resonance frequency of the cavity. These theoretical predictions explain why directivities for the
(0, 2) modes are less directional than the (0, 1) modes.

B. SPHERICAL CAP WITH IMPOSED MODE SHAPES

Figure 8 plots several comparative results for the ageng lanang gong and the spherical cap model with
imposed mode shapes. Figures 8(a)-(d) show four selected normal surface velocity distributions based on
scanning laser Doppler vibrometer (SLDV) scans of the gong’s face.5 Figure 8(e)-(g) show the measured
directivity patterns at associated spectral peaks, extrapolated to the far-field.5 Finally, Figs. 8(h)-(l) show
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Figure 6: Measured (a)-(b) and modeled (c)-(d) far-field ageng lanang gong directivity results for the (a)
and (c) (0,1) mode (63 Hz) and (b) and (d) (0, 2) mode (130 Hz).

Figure 7: Measured (a)-(b) and modeled (c)-(d) far-field bebende gong directivity results for the (a) and
(c) (0,1) mode (144 Hz) and (b) and (d) (0, 2) mode (469 Hz).
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Figure 8: The SLDV out-of-plane surface velocity distributions of the ageng lanang gong measured at
(a) 104 Hz, (b) 376 Hz (c) 566 Hz, and (d) 498 Hz. Measured directivities extrapolated to the far-field at
(e) 104 Hz, (f) 376 Hz (g) 566 Hz, and (h) 501 Hz. Modeled directivities at (i) 104 Hz, (j) 376 Hz (k) 566
Hz, and (l) 501 Hz.

predicted directivities based on the theoretical model. Although the model employs several simplifying
assumptions, it achieves reasonable agreement, particularly at lower frequencies. The directivity results for
the (1, 1) mode at 104 Hz shown in Figs. 8 (e) and (i) reveal only slight differences between the measured
and predicted values. However, while the theoretical model is highly symmetric and exactly aligned with
the x-axis, the measured directivity shows minor asymmetries and some misalignment. These differences
could result from inhomogeneities in the gong’s construction.

The measured directivity results at 376 Hz and 566 Hz [Figs. 8(f) and (g)] both show four-lobed
patterns—even though the associated gong surface velocity distributions differ substantially. The lobe loca-
tions and pattern orientations align with the four anti-nodal vibration regions at the gong’s edge. Unlike the
predicted directivities [Figs. 8(j) and (k)], which exhibit perfect symmetries, the measured results, similar
to the (1, 1) mode, have asymmetries. Nonetheless, the predicted directivities also have four-lobe patterns
with orientations similar to those of the measured results. This agreement illustrates the utility of simple
theoretical models for clarifying directional behaviors.

The measured directivity at 501 Hz seen in Fig. 8(d) shows substantial radiation behind the instrument,
although there also appear roughly four lobes, two in front of and two behind the gong. In contrast, the pre-
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Figure 9: The SLDV out-of-plane surface velocity distributions of the bebende gong measured at (a) 388
Hz (b) 546 Hz (c) 606 Hz (d) 692 Hz. Measured directivities extrapolated to the far-field at (e) 389 Hz (f)
539 Hz (g) 606 Hz (h) 692 Hz. Modeled directivities at (i) 389 Hz (j) 539 Hz (k) 606 Hz (l) 692 Hz.

dicted directivity [Fig. 8(l)] only shows two symmetric lobes. Because the imposed mode shape model does
not incorporate the cavity geometry used in the spherical shell model, it cannot predict stronger radiation
behind the gong.

Results from the bebende gong further illustrate the model’s utility while underscoring its limitations.
Figures 9 (a)-(d) show four selected normal surface velocity distributions based on SLDV scans of the gong’s
face.5 Figures 9(e)-(g) show the measured directivity patterns at the associated spectral peaks, extrapolated
to the far field. Finally, Figs. 9(h)-(l) show predicted directivities based on the theoretical model. In all
four cases, the number of lobes and their relative positions correspond with anti-nodal edge regions of the
gong’s measured surface velocity. While the measured directivity patterns show similarities in the numbers
and orientations of the directional lobes, they exhibit significant asymmetries.

At 389 Hz [Figs. 9(e) and (i)] and 606 Hz [Figs. 9(g) and (k)], the directivity asymmetries are less
pronounced, so that the correspondence between the predicted and measured results remains clear. However,
the directivities at 539 Hz [Figs. 9(f) and (j)] and 692 Hz [Figs. 9(h) and (l)] show significantly stronger
asymmetries. At 539 Hz [Fig. 9(f)] four of the six lobes are very pronounced, while at 692 Hz [Fig. 9(h)],
three of the eight lobes are very pronounced. Thus, while the theoretical model shows promise at accurately
predicting the numbers and locations of the radiation lobes, neglecting the gong’s material and structural
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inhomogeneities and other properties limits its efficacy.

4. CONCLUSIONS

This work has presented two theoretical spherical models to study the directional radiation character-
istics of gamelan gongs. Both models allow analytic solutions for their far-field radiation. The first is a
vibrating cap on a spherical shell with a circular aperture that provides insight into the impacts of the cavity-
like geometries on gong radiation. This model predicts dipole radiation at very low frequencies, decreasing
directionality approaching the Helmholtz resonance frequency of the cavity and omnidirectional radiation at
the resonance frequency. Comparisons of directivities of the axisymmetric modes of two gongs confirmed
the model’s basic theoretical assertions. The second model is a vibrating cap on a rigid sphere with imposed
mode shapes. Comparisons between measured and predicted directivities validated the model’s utility in
predicting the numbers and locations of directional lobes.

Limitations to the models include their failure to predict the asymmetries present in measured direc-
tivities. Future work could combine the models into a single form to incorporate complex mode shapes
and cavity geometries. Other models based on cylindrical geometries would also benefit studies of sound
radiation from gamelan gongs.
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