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Low-frequency radiation from a vibrating cap on a rigid
spherical shell with a circular aperture
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ABSTRACT:
Theoretical models based on spherical geometries have long provided essential insights into the directional behavior

of sound sources such as loudspeakers and human speech. Because commonly applied models predict

omnidirectional radiation at low frequencies and increasing directionality at higher frequencies, they fail to predict

the directional characteristics of certain sources with different source geometries. These sources include violins and

open-back guitar amplifiers that have openings or ports connecting a cavity or enclosure to the exterior domain. This

work presents the low-frequency radiation from a vibrating cap on a rigid spherical shell with a circular aperture to

study the directional characteristics of such sources. The proposed model predicts dipolar radiation at very low fre-

quencies, monopolar radiation near the Helmholtz resonance, and increasing directionality at higher frequencies.

Experimental results based on measuring the sound field of an open-back spherical loudspeaker validate the theoreti-

cal model and highlight its utility in predicting directional behavior. VC 2023 Acoustical Society of America.
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I. INTRODUCTION

Theoretical models based on simple spherical geome-

tries have long been used to improve understanding of the

directional characteristics of sound sources. Their usefulness

primarily results from their geometries, which allow spheri-

cal harmonic expansions of the pressure field with analyti-

cally determined expansion coefficients. The advantage of

spherical models over the circular cap in an infinite plane

rigid baffle and its counterparts1–3 is that they incorporate

diffraction about finite bodies, yielding more realistic

approximations over three-dimensional space for practical

applications. Consequently, spherical models are desirable

for their reliability, computational clarity, and increased

realism.

Morse and Ingard derived analytical results for a radi-

ally vibrating “cap” (spherical cap or spherical segment of

one base) and a point source on a rigid sphere.4,5 Among

other effects, their results showed omnidirectional radiation

for long wavelengths and shadowing behind the sphere, both

of which are helpful for understanding basic diffraction

effects ranging from those of loudspeaker cabinets6 to musi-

cians’ bodies.7 Skudrzyk derived results for an axially

vibrating spherical cap and a plane circular cap set in a

sphere.8 The latter employed a least squares approximation

to the expansion coefficients based on a technique devel-

oped by Williams et al.9 Beranek and Mellow considered

radiation from a rectangular cap on a sphere,10 with results

that required numerical integration to determine the final

values of the expansion coefficients. Aarts and Janssen

provided results for axisymmetric velocity distributions by

introducing the Zernike polynomials to provide solutions for

various Stenzel velocity profiles.11 Other authors have

explored variations such as surrounding a vibrating cap with

a pressure-release spherical baffle12 or surrounding a vibrat-

ing cap with a pressure-release belt set in a rigid spherical

baffle.13

Numerous authors have applied spherical models suc-

cessfully to predict directivities of practical sources. For

example, Johansen found in his horn studies that a radially

oscillating cap set in a rigid sphere provided excellent agree-

ment with his boundary element method (BEM) simula-

tions.14 Other authors implemented spherical models to

simulate the directivities of regular polyhedron loudspeakers

(RPLs).15–17 Through superposition, one can easily place

multiple vibrating caps, representing loudspeaker drivers of

varying sizes and locations, on an otherwise rigid spherical

body. When they are combined in this way, the resultant

directivities no longer produce a single axis of principal

radiation at small wavelengths but instead take on more

complex multi-directional patterns characteristic of RPLs.18

Beyond loudspeakers, authors have employed the model of

a radially vibrating cap on a sphere to represent the radiation

and directivity of speech.19–21

While each spherical model has included different

underlying assumptions about the cap velocity distribution

or boundary conditions on the spherical baffle, they all qual-

itatively suggest the same general directional characteristics:

(1) omnidirectional radiation for long wavelengths and (2)

strong directivity in front of the vibrating cap with accompa-

nying shadowing behind the sphere for short wavelengths.

Consequently, despite their broad applicability and utility ina)Email: samuel.bellows11@gmail.com
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approximating selected source radiation characteristics, they

cannot satisfactorily represent other sources without further

adaptations. For example, more challenging problems

include some ported loudspeakers, open-back guitar ampli-

fiers, and many musical instruments that may not behave as

omnidirectional sources at low frequencies. Their lack of

omnidirectional behavior is due to the “sound hole sum

rule” discussed by Weinreich in his work on the violin.22

The sound hole sum rule states that when the wave-

length is large so that the air motion behaves as an incom-

pressible fluid, source geometries with ports or sound holes

connecting the interior cabinet or cavity to the exterior

domain have a vanishing monopole moment. This effect

occurs as any incompressible flow produced by a vibrating

surface is exactly canceled by flow entering through the

opening. This volume velocity cancellation allows more

complex radiation patterns at low frequencies, such as dipo-

lar radiation for the violin. As a monopole moment can only

form when inertial effects disrupt the exact cancellation of

the velocity flow, the Helmholtz resonance of such configu-

rations demarcates varying directional behavior.22

Previous works have considered geometries relevant to

these problems to a limited extent, although they primarily

focused on sound scattering. For example, Miles explored

the scattering of a plane wave by a hollow, rigid spherical

shell with a circular aperture.23 Because the resultant bound-

ary value problem (BVP) led to mixed boundary conditions,

he presented both a long wavelength approximation and

numerically evaluated variational solutions. Elias and

Malb�eque considered scattering from a point source located

at the center of a similar structure using both the BEM and

the method of analytical reduction (MAR),24 a valuable

technique for efficient solutions with both long and short

wavelengths.25 Their results included an analysis of the

Helmholtz resonance, radiated sound power, and directivity.

More recently, Vinogradova considered scattering from a

spherical barrel (a hollow sphere with two circular aper-

tures), also using MAR.26

Despite its potential to support many modeling applica-

tions, one arrangement lacks significant analysis in the liter-

ature: the sound radiation from a vibrating cap set on a rigid

spherical shell with an open circular aperture. Knowledge of

the solution to this problem will benefit researchers and

practitioners in several areas of acoustics, whose explora-

tions include relevant vibrations and radiations from cavity-

like structures with apertures.

This work develops a solution in the following ways.

First, Sec. II presents the problem formulation and derives

two integral equations that solve the BVP, following the

general approach used by Miles. The first equation, based on

an aperture-velocity formulation, is most useful when the

aperture size is smaller than the wavelength. The second

equation, based on a potential-layer formulation, reduces to

thin-walled boundary integral equations and is more suitable

for larger aperture sizes.

While one may discretize both integral equations and

numerically solve them using BEMs, Sec. III instead

focuses on a low-frequency approximation based on the

concepts of self-and mutual radiation impedances between

the vibrating cap and aperture. While numerical methods are

commonly used in acoustics to solve complex problems,

Shaw noted that “the cost is high in terms of effort and in

the loss of contact with fundamental concepts.”27 The low-

frequency approximation leads to a superposition of two

caps on a rigid sphere, one of whose velocity is the given

vibrating cap velocity and the other is the aperture particle

velocity. Analytical solutions to the self- and mutual impe-

dances reveal that these two equivalent caps vibrate out of

phase at very low frequencies and in phase at the Helmholtz

resonance frequency.

Further simplification of the self-and mutual impedan-

ces leads to their lumped-element approximations, including

the interior and exterior end corrections for a cap set in a

sphere. The lumped element parameters predict essential

system characteristics, including the Helmholtz resonance.

A multipole expansion of the radiation reveals the low-

frequency directional characteristics, including dipole radia-

tion at large wavelengths and quasi-omnidirectionality at the

Helmholtz resonance frequency. Finally, Sec. V validates

the results experimentally through directivity measurements

of a spherical loudspeaker with a single driver and a variable

enclosure aperture.

II. ANALYTICAL MODEL

A. Formulation

Consider a rigid, spherical shell of radius r¼ a and neg-

ligible wall thickness, as depicted in Fig. 1. The shell

includes a circular aperture of cone half angle aa centered

about ðha;/aÞ. It also includes a radially vibrating spherical

cap of cone half angle ac centered about ðhc;/cÞ with con-

stant normal surface velocity uc.

Denote the exterior domain Xþ as the region r> a and

the interior domain X� as the region r< a. Additionally, let

Cc be the surface of the vibrating cap, Ca be the spherical

surface of the aperture, and Cs be the surface of the remain-

ing spherical shell.

The following BVP describes the time-harmonic pres-

sure (for eixt time dependence):

r2pðr; h;/Þ þ k2pðr; h;/Þ ¼ 0; Xþ;X�; (1)

lim
r!1

r
@

@r
pðr; h;/Þ þ ikpðr; h;/Þ

� �� �
¼ 0; (2)

unða; h;/Þ ¼
uc; Cc;
0; Cs;

�
(3)

pþða; h;/Þ ¼ p�ða; h;/Þ; Ca; (4)

uþn ða; h;/Þ ¼ u�n ða; h;/Þ; Ca; (5)

where un is the particle velocity normal to the spherical sur-

face. Equation (2) represents the Sommerfeld radiation con-

dition [see Ref. 28, Eq. (4.5.5)] and Eqs. (4) and (5),
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respectively, enforce the continuities of pressure and particle

velocity across the aperture connecting the interior and exte-

rior domains.

The following presents two distinct integral equations that

solve the BVP, reflecting the general approach of Miles. The

first follows from an aperture velocity formulation, whereas

the second employs a potential-jump formulation across the

surface at r¼ a. The work presents both methods because

the first leads to a low-frequency approximation derived later;

the second relates to common boundary integral equations.

B. Aperture velocity solution

One approach to the solution is to superpose two rigid,

closed spheres with vibrating caps, as in techniques used to

model RPLs and their directivities.15–17 The first cap’s nor-

mal velocity uc is constant and the second cap’s normal

velocity uaðh;/Þ is the unknown aperture particle velocity,

which generally varies over Ca and satisfies the remaining

boundary conditions. The total pressure from both caps is

pðrÞ ¼ p1ðrÞ þ p2ðrÞ; (6)

where p1 is the pressure produced by the sphere with cap

velocity uc and p2 is the pressure produced by the sphere

with cap velocity (aperture particle velocity) uaðh;/Þ.
An eigenfunction expansion yields the pressure p1 for a

radially vibrating cap on a rigid sphere. Expanding the asso-

ciated particle velocity u1 in terms of spherical harmonics

gives

u1ðh;/Þ ¼
X1
n¼0

Xn

m¼�n

Um
n Ym

n ðh;/Þ; (7)

where

Ym
n ðh;/Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 1Þ

4p
ðn� mÞ!
ðnþ mÞ!

s
Pm

n ðcos hÞeim/ (8)

are the normalized spherical harmonics of degree n and

order m (Ref. 29) and

Um
n ¼ ucAnðacÞ

4p
ð2nþ 1Þ Ym

n ðhc;/cÞ
� 	�

; (9)

where the asterisk denotes complex conjugation. The coeffi-

cients An are10

AnðacÞ ¼

1

2
ð1� cos acÞ; n ¼ 0;

1

2
Pn�1ðcos acÞ � Pnþ1ðcos acÞ½ �; n > 0;

8>><
>>: (10)

where Pn are the Legendre polynomials, such that

X1
n¼0

AnðacÞPnðcos hÞ ¼
1; h < ac;

0; h > ac:

(
(11)

Additionally, the surface area of a cap of angle ac is

Sc ¼ 2pa2ð1� cos acÞ: (12)

Equation (10) provides the Legendre polynomial expansion

coefficients of a unit amplitude cap for the axisymmetric

case ðhc;/cÞ ¼ ð0; 0Þ; uc ¼ 1. Equation (9) then applies the

spherical harmonic addition theorem29

Pnðcos HÞ ¼ 4p
2nþ 1

Xn

m¼�n

Ym
n ðh;/Þ Ym

n ðhc;/cÞ
� 	�

; (13)

where cos H ¼ cos h cos hc þ sin h sin hc cos ð/� /cÞ with

H being the angle between ðh;/Þ and ðhc;/cÞ, to rotate the

vibrating cap to arbitrary ðhc;/cÞ.
The velocity expansion coefficients Um

n not only deter-

mine the normal velocity over the sphere but also uniquely

define the radiated pressure field.39 Applying Euler’s equa-

tion on the spherical surface

�iz0ku1ðh;/Þ ¼
@

@r
p1ðr; h;/Þ






r¼a

(14)

to the solution of the Helmholtz equation in spherical coor-

dinates gives the pressure both inside and outside the sphere

as [see Ref. 39, Eq. (6.96) and Eq. (6.102) and compare Ref.

23, Eq. (18)]

p1ðr; h;/Þ ¼
�iz0

X1
n¼0

Xn

m¼�n

Um
n

jnðkrÞ
j0nðkaÞ Y

m
n ðh;/Þ; r < a;

�iz0

X1
n¼0

Xn

m¼�n

Um
n

hð2Þn ðkrÞ
h
ð2Þ0
n ðkaÞ

Ym
n ðh;/Þ; r > a;

8>>>>><
>>>>>:

(15)

where jn and hð2Þn are the spherical Bessel and Hankel func-

tions of order n and z0 ¼ q0c is the characteristic specific

acoustic impedance of the medium.

The pressure p2 produced by the second cap represent-

ing the aperture particle velocity follows similarly. The

spherical harmonic expansion coefficients relate to uaðh;/Þ
through the orthogonality of the spherical harmonics

FIG. 1. (Color online) Depiction of a vibrating cap (red) on a rigid spherical

shell (gray) with an open aperture.

J. Acoust. Soc. Am. 154 (6), December 2023 Samuel D. Bellows and Timothy W. Leishman 3885

https://doi.org/10.1121/10.0023936

https://doi.org/10.1121/10.0023936


Vm
n ¼

ð2p

0

ðp

0

uaðh;/Þ Ym
n ðh;/Þ

� 	�
sin hdhd/: (16)

The integral vanishes outside of Ca and the resultant pres-

sure is

p2ðr; h;/Þ ¼
�iz0

X1
n¼0

Xn

m¼�n

Vm
n

jnðkrÞ
j0nðkaÞY

m
n ðh;/Þ; r < a;

�iz0

X1
n¼0

Xn

m¼�n

Vm
n

hð2Þn ðkrÞ
h
ð2Þ0
n ðkaÞ

Ym
n ðh;/Þ; r > a:

8>>>><
>>>>:

(17)

Continuity boundary conditions across the aperture

determine uaðh;/Þ and its expansion coefficients Vm
n . To

derive the result, first let dp1 be the pressure difference of p1

across the boundary r¼ a of the closed sphere with a radi-

ally vibrating cap

dp1ðh;/Þ ¼ �iz0

X1
n¼0

Xn

m¼�n

fnUm
n Ym

n ðh;/Þ; (18)

where, with the aid of the Wronskian relationship

j0nðkaÞhnðkaÞ � h0nðkaÞjnðkaÞ ¼ i

ðkaÞ2
; (19)

the expansion coefficient is

fn ¼
i

j0nðkaÞh0nðkaÞðkaÞ2
: (20)

The pressure difference dp2 caused by the aperture cap

has a form similar to Eq. (18) but with Um
n replaced by Vm

n .

The total pressure difference dp from both fields is then

dpðh;/Þ ¼ dp1ðh;/Þþ dp2ðh;/Þ

¼ dp1ðh;/Þ� iz0

X1
n¼0

Xn

m¼�n

fnVm
n Ym

n ðh;/Þ: (21)

Applying continuity of pressure (dp ¼ 0) at the boundary

yields

iz0

X1
n¼0

Xn

m¼�n

fnVm
n Ym

n ðh;/Þ ¼ dp1ðh;/Þ; ðh;/Þ 2 Ca; (22)

so that substituting Eq. (16) into Eq. (22) gives the integral

equationð ð
Ca

uaðh0;/0ÞKaðcos HÞ sin h0dh0d/0

¼ dp1ðh;/Þ; ðh;/Þ 2 Ca; (23)

where

Kaðcos HÞ ¼ iz0

X1
n¼0

fn
2nþ 1

4p
Pnðcos HÞ: (24)

The integral equation only requires evaluation on Ca.

Equation (23) corresponds to Eq. (26) of Ref. 23, except

with a different definition of dp because Miles’ formulation

considered the pressure jump due to a plane wave and not a

vibrating cap on a rigid sphere. Standard numerical proce-

dures can discretize and solve the integral equation for ua

since Ka and dp1 are known.23,30

C. Potential layer solution

The potential layer approach determines the pressure as

a result of a pressure jump dp across the spherical boundary

r¼ a. Expressing the potential layer dp in terms of a spheri-

cal harmonic expansion and then applying Euler’s equation

and the associated boundary conditions yields another inte-

gral equation, this time over Cc [ Cs (Ref. 23),ð ð
Cc[Cs

dpðh0;/0Þgsðcos HÞ sin h0dh0d/0

¼ iz0unðh;/Þ; ðh;/Þ 2 Cc [ Cs; (25)

where

gsðcos HÞ ¼
X1
n¼0

f�1
n

2nþ 1

4p
Pnðcos HÞ: (26)

This integral equation coincides with Eq. (57) of Ref. 23.

Given the expression for the free-space Green’s func-

tion in terms of spherical harmonics23

Gðr; r0Þ ¼ �
X1
n¼0

ikhð2Þn ðkrÞjnðkr0Þ 2nþ 1

4p
Pnðcos HÞ; (27)

when r and r0 are on the surface r¼ a,

@2

@r@r0
Gðr; r0Þ ¼ � k

a2
gsðcos HÞ (28)

and one obtainsð ð
Cc[Cs

dpðr0Þ @2

@n@n0
Gðr; r0ÞdS ¼ �iz0kunðrÞ; (29)

which is a thin-body formulation of the hyper-singular

boundary integral equation.31–33 Reference 30 contains

more details concerning its numerical implementation and

the necessary handling of the kernel’s singularities.

Importantly, one solves Eq. (23) over Ca whereas one

solves Eq. (29) over Cc [ Cs. Consequently, when consider-

ing the total number of discretized unknowns, Eq. (23) is

more appropriate for a small aperture size, whereas Eq. (29)

is more appropriate for a large aperture size.

III. LOW-FREQUENCY APPROXIMATIONS

A. Vibrating cap self-and mutual impedance

Consider the aperture velocity formulation presented in

Sec. II B. Assuming the aperture velocity is roughly constant

3886 J. Acoust. Soc. Am. 154 (6), December 2023 Samuel D. Bellows and Timothy W. Leishman

https://doi.org/10.1121/10.0023936

https://doi.org/10.1121/10.0023936


at low frequencies allows a simplified approximation based

on the superposition of two radially vibrating caps on a

sphere. Determining the aperture velocity amplitude

requires the self-and mutual impedances between these two

caps. Consequently, this section develops the self-and

mutual impedances between two radially vibrating caps on a

sphere. The first has a cone half angle a1 and surface area

S1, while the second has a cone half angle a2 and surface

area S2.

On the exterior side, the self-acoustic impedance of the

first cap is10,34

ZþA;11 ¼
hp1iþS1

U1






U2¼0

¼�i4pa2z0

S2
1

X1
n¼0

hð2Þn ðkaÞ
h
ð2Þ0
n ðkaÞ

A2
nða1Þ
ð2nþ 1Þ : (30)

On the interior side, the self-impedance follows by replacing

the spherical Hankel functions with spherical Bessel

functions,

Z�A;11 ¼
hp1i�S1

U1






U2¼0

¼ �i4pa2z0

S2
1

X1
n¼0

jnðkaÞ
j0nðkaÞ

A2
nða2Þ

ð2nþ 1Þ : (31)

The self-impedances of the second cap follow similarly.

The exterior mutual acoustic impedance between the

first and second caps is34

ZþA;12 ¼
hp1iþS1

U2






U1¼0

¼ �i4pa2z0

S1S2

X1
n¼0

Pnðcos H12Þ

� hð2Þn ðkaÞ
h
ð2Þ0
n ðkaÞ

Anða1ÞAnða2Þ
ð2nþ 1Þ ; (32)

where H12 is the angle between the centers of the two caps.

For the interior side, the mutual impedance is

Z�A;12 ¼
hp1i�S1

U2






U1¼0

¼ �i4pa2z0

S1S2

X1
n¼0

Pnðcos H12Þ

� jnðkaÞ
j0nðkaÞ

Anða1ÞAnða2Þ
ð2nþ 1Þ : (33)

The mutual impedances ZþA;21¼ZþA;12 and Z�A;21¼Z�A;12 from

acoustic reciprocity, which is apparent from the formulas.

B. Approximation using eigenfunction expansion

At low frequencies, the self-and mutual impedances

relate the cap volume velocity Uc ¼ ucSc to the unknown

aperture volume velocity Ua in the following way. The total

spatially averaged pressure at the aperture opening due to

both caps is

hpai6Sa
¼ UaZ6

A;aa þ UcZ6
A;ac; (34)

where ZA;aa is the self-impedance, ZA;ac is the mutual imped-

ance, and the 6 symbol indicates that the expression holds

for both the exterior and interior sides. Replacing the point-

wise continuity of the pressure [Eq. (4)] with continuity of

the spatially averaged pressure requires that

Ua ¼ �Uc

ZþA;ac � Z�A;ac

ZþA;aa � Z�A;aa

 !
: (35)

Thus, under the approximation of uniform aperture par-

ticle velocity (uaSa ¼ Ua), the low-frequency representation

of Vm
n becomes

Vm
n � ua

4pAnðaaÞ
ð2nþ 1Þ Ym

n ðha;/aÞ
� 	�

: (36)

The total pressure field becomes

pðr; h;/; kÞ ¼
X1
n¼0

Xn

m¼�n

Gm
n ðkÞhð2Þn ðkrÞYm

n ðh;/Þ; (37)

where

Gm
n ¼

�iz0

h
ð2Þ0
n ðkaÞ

4p
ð2nþ 1Þ

n
ucAnðacÞ Ym

n ðhc;/cÞ
� 	�

þuaAnðaaÞ Ym
n ðha;/aÞ

� 	�o
: (38)

C. Network representation

Equation (35) allows an approximation of the aperture

volume velocity for wavelengths large compared to the

aperture size by relating the self-and mutual impedances of

the vibrating cap and aperture to each other. Additional sim-

plification follows by representing each impedance as a

lumped-element component. The lumped-element represen-

tation is particularly beneficial for estimating the Helmholtz

resonance of the cavity and understanding the low-

frequency behavior of the aperture volume velocity.

For long wavelengths, the small-argument approxima-

tion of the ratio29

hð2Þn ðkaÞ
h
ð2Þ0
n ðkaÞ

� �ka

nþ 1
; ka� 1 (39)

in Eq. (30) yields

ZþA;11 � ~Z
þ
A;11

¼ i4pa3z0k

S2
1

X1
n¼0

A2
nða1Þ

ð2nþ 1Þðnþ 1Þ

¼ ixq0lþ1
S1

; (40)

where ~Z indicates a lumped-element impedance approxima-

tion and
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lþ1 ¼
4pa3

S1

X1
n¼0

A2
nða1Þ

ð2nþ 1Þðnþ 1Þ (41)

is the exterior end correction. Thus, the exterior self-

impedance of the vibrating cap involves only an acoustic

mass-like element.

The acoustic impedance of the same cap looking in to

the cavity involves both acoustic compliance and acoustic

mass elements in series. The compliance stems from the

n¼ 0 expansion term, whereas the mass follows from the

n> 0 terms. The n¼ 0 term reduces by applying small-

argument approximations to the spherical Bessel func-

tions,29 such that

j0ðkaÞ
j00ðkaÞ �

�3

ka
(42)

and Eq. (31) becomes

�i4pa2z0

S2
1

j0ðkaÞ
j00ðkaÞA

2
0ða1Þ �

i12paz0

k

A2
0ða1Þ
S2

1

¼ i3q0c2

4pa3x
; (43)

since A0ða1Þ ¼ 1
2
ð1� cos a1Þ and S2

1 ¼ 2pa2ð1� cos a1Þ.
The terms for n> 0 reduce through the approximation

jnðkaÞ
j0nðkaÞ �

ka

n
; ka� 1; n > 0; (44)

such that

�i4pa2z0

S2
1

X1
n¼1

jnðkaÞ
j0nðkaÞ

A2
nða1Þ

ð2nþ 1Þ

� �i4pa3kz0

S2
1

X1
n¼1

A2
nða1Þ

nð2nþ 1Þ

¼ �ixq0l�1
S1

; (45)

where l�1 is the interior end correction

l�1 ¼
4pa3

S1

X1
n¼1

A2
nða1Þ

nð2nþ 1Þ : (46)

Combining both terms yields

Z�A;11 � ~Z
�
A;11 ¼ �

q0c2

ixV
� ixq0l�1

S1

; (47)

where V ¼ 4pa3=3 is the sphere’s volume. Interestingly,

only the acoustic mass depends on the cap cone half angle

a1. The negative signs appearing in Eq. (47) result from the

definition of the normal direction of the sphere. For exam-

ple, at very low frequencies where the acoustic compliance

dominates, a negative cap velocity should lead to a compres-

sion in the cavity.

The mutual impedances simplify in a similar manner.

On the exterior side,

ZþA;12 � ~Z
þ
A;12 ¼

ixq0lþ12

S2

; (48)

which is again mass-like, with an exterior mutual end

correction

lþ12 ¼
4pa3

S1

X1
n¼0

Pnðcos H12Þ
Anða1ÞAnða2Þ
ð2nþ 1Þðnþ 1Þ : (49)

The mutual impedance inside the sphere incorporates an

acoustic compliance and mass in series,

Z�A;12 � ~Z
�
A;12 ¼ �

q0c2

ixV
� ixq0l�12

S2

; (50)

where the interior mutual end correction is

l�12 ¼
4pa3

S1

X1
n¼1

Pnðcos H12Þ
Anða1ÞAnða2Þ

nð2nþ 1Þ : (51)

Figure 2 plots the normalized self-acoustic reactances

on the exterior and interior and exterior sides of a vibrating

cap on a sphere with cone half angle a1 ¼ 10�. The solid

black curves represent the values from the expansions given

in Eqs. (30) and (31). The dashed red curves represent the

low-frequency approximations from Eqs. (43) and (47). For

the exterior reactance, the low-frequency approximation

remains reasonable even for ka> 1; however, the presence

of modes within the spherical cavity limit the low-frequency

approximation for the interior reactance.

D. Aperture volume velocity

Using the lumped-element impedance representations

in Eq. (35) produces the following estimate for the aperture

volume velocity:

~Ua ¼ �Uc
Sa � k2Vðlþac þ l�acÞ
Sa � k2Vðlþa þ l�a Þ

" #
; (52)

where l6ac are the mutual end corrections between the cap

and aperture and l6a are the end corrections for the aperture.

In the case that ka <<< 1 the aperture volume velocity

becomes

~Ua ¼ �Uc: (53)

Thus, as one may anticipate from near-incompressible flow

at low-frequencies, the fluid externally displaced by the

vibrating cap equals the fluid entering through the aperture.

This equation consequently verifies Weinreich’s “sound

hole sum rule”22 for this spherical geometry and leads to a

strong dipole moment at these frequencies (see Sec. III E).

Finally, from Eq. (52) one can estimate the Helmholtz

resonance frequency in terms of the lumped element
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parameters by solving for the zero of the denominator. From

Eq. (35) it is apparent that the zero occurs when ZþA;a ¼ Z�A;a.

Applying the lumped-element values yields the Helmholtz

resonance frequency35

~fH ¼
c

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sa

Vðlþa þ l�a Þ

s
: (54)

This equation highlights the importance of including the

cavity inertance, represented by the interior end correction

l�a , for predicting fH.36

Figure 3 plots the magnitude and phase of the aperture

volume velocity for the parameters ac ¼ 10�; ðhc;/cÞ
¼ ð90�;0�Þ;aa ¼ 12�; ðha;/aÞ ¼ ð90�;180�Þ, and uc¼1mm/s.

The blue curve presents the aperture volume velocity calcu-

lated from Eq. (35), whereas the green dashed curve shows

the lumped-element prediction of the volume velocity from

Eq. (52). The horizontal black dash-dot line indicates the vol-

ume velocity of the cap Uc, and the vertical red dotted line

shows the estimated Helmholtz resonance frequency ~f H from

the lumped-element parameters. The insert on the magnitude

plot shows results near the Helmholtz resonance.

For very small ka, both Ua and Uc converge to the same

magnitude value but are 180� out of phase as described by

Eq. (53). As frequency increases, the magnitude has a sharp

peak very near ~f H, at which point the aperture volume

velocity changes to being in phase with the cap volume

velocity. The wave-based self-and mutual impedances used

to calculate Ua in Eq. (35) include both resistive and reac-

tive components and thus incorporate radiation losses.

However, the lumped element approximations used to calcu-

late ~Ua do not. As a result, jUaj does not become singular at
~f H unlike j ~Uaj. Additionally, the incorporation of some radi-

ation losses in Ua lowers the actual Helmholtz resonance fH
from the lumped-element estimate ~f H.

Above ~f H, the lumped-element representation predicts

that j ~Uaj from Eq. (52) will continue to decrease; however,

the curve representing jUaj from Eq. (35) shows that after

dropping below jUcj; jUaj increases again. Nonetheless, the

results suggest that for ka< 1, the lumped-element approxi-

mation ~Ua gives a reasonable approximation to Ua. This

simplification may be beneficial for other cavity geometries

where the exact forms of the self-and mutual impedances

are unknown but one may estimate parameters such as cav-

ity volume, surface area, and end-corrections.

E. Multipole moments

At low frequencies, it is possible to predict the direc-

tional behavior of the source by considering its multipole

representation.28 The multipole expansion follows from a

Taylor series approximation of the Green’s function

FIG. 2. (Color online) Self-acoustic reactances of a vibrating cap on a

closed sphere: (a) external side and (b) internal side. The red dashed curves

represent low-frequency approximations. FIG. 3. (Color online) Magnitude and phase of the aperture volume veloc-

ity. The inset shows magnitude results near the Helmholtz resonance.

J. Acoust. Soc. Am. 154 (6), December 2023 Samuel D. Bellows and Timothy W. Leishman 3889

https://doi.org/10.1121/10.0023936

https://doi.org/10.1121/10.0023936


employed in the Kirchhoff Helmholtz integral theorem. This

allows computation of the monopole, dipole, and higher-

order moments from surface integrals based on the known

pressure and normal particle velocity on the boundary.28,37

For example, the monopole moment is

M ¼ iz0ka2

ð2p

0

ðp

0

unðh;/Þ sin hdhd/; (55)

where unðh;/Þ is the normal component of the surface

velocity [see Eq. (1)] and the dipole moment is

D ¼ a2

ð2p

0

ðp

0

iz0kaunðh;/Þ þ pðh;/Þ½ �r̂ sin hdhd/; (56)

where r̂ ¼ ðx; y; zÞ=r is the unit vector in the direction of r.

Based on these two moments, the resultant field is then

pðrÞ � pmðrÞ þ pdðrÞ; (57)

where

pmðrÞ ¼ M
e�ikr

4pr
(58)

and

pdðrÞ ¼ ik
e�ikr

4pr
1� i

kr

� �
D 	 r̂: (59)

Because of the similarity between the multipole sources

and the spherical wave functions comprised of spherical har-

monics and spherical Hankel functions, it is possible to

assign values of the expansion coefficients to respective

multipole moments.38,39 However, only in the limit of ka� 1

do the relations between the expansion coefficients and the

values produced by the surface integrals in Eqs. (55) and (56)

become equal.

Consider the monopole moment M ¼ iz0kUm, where Um

is the equivalent monopole source strength (volume velocity).

By equating terms in the spherical harmonic expansion to the

pressure field of Eq. (58), it is evident that39

Um ¼
ffiffiffiffiffiffi
4p
p

z0k2
G0

0ðkÞ: (60)

By substituting the value for Gm
n ðkÞ from Eq. (38) and using

Y0
0ðh;/Þ ¼ 1=

ffiffiffiffiffiffi
4p
p

and Si ¼ 4pa2A0ðaiÞ, one arrives at the

result

Um ¼
�iðUc þ UaÞ
ðkaÞ2h

ð2Þ0
0 ðkaÞ

: (61)

If ka� 1, then the derivative of the spherical Hankel func-

tion simplifies the expression further so that

Um � Uc þ Ua: (62)

This result shows that for long wavelengths, the equivalent

monopole volume velocity is the net volume velocity on the

spherical surface as shown by Eq. (55). Because of the

results in Sec. III D, when ka <<< 1; Um ! 0 and the

monopole moment vanishes.

Similarly, the source’s dipole moment follows by equat-

ing terms from the dipole pressure expression and the

expansion components. Because the dipole moments in the

x̂ and ŷ directions both contribute to the positive and

negative-order spherical harmonic of degree one, it is con-

venient to express the relation to the expansion coefficients

using the matrix form40

Dx

Dy

Dz

2
64

3
75 ¼ i

ffiffiffiffiffiffi
6p
p

k2

1 0 �1

�i 0 �i

0
ffiffiffi
2
p

0

2
64

3
75

G�1
1

G0
1

G1
1

2
64

3
75: (63)

While this result describes the most general relation between

the degree-one expansion coefficients and the dipole

moment, it is worthwhile to consider the special case where

the cap and aperture align on the z-axis [i.e., ðhc;/cÞ
¼ ð0�; 0�Þ and ðha;/aÞ ¼ ð180�; 0�Þ]. Then by symmetry,

the dipole components Dx and Dy become zero and the

z-component of the dipole moment becomes

Dz ¼
3pz0

h
ð2Þ0
1 ðkaÞk2

uc sin2ac � ua sin2aa

� �
; (64)

where the development used A1ðaiÞ ¼ 3=4 sin2ai and

Y0
1ðh;/Þ ¼

ffiffiffiffiffiffiffiffiffiffi
3=4p

p
cos ðhÞ. For ka� 1, the expression sim-

plifies further to

Dz � iz0k
3pa3

2
uc sin2ac � ua sin2aa

� �
: (65)

This term relates directly to Eq. (56) in the following man-

ner. Suppose the dipole moment results from a single vibrating

cap of angle ac, oriented at ðhc;/cÞ ¼ ð0; 0Þ, and with constant

normal velocity ui. The integral of Eq. (56) splits into two inte-

grals, one for the normal component of the particle velocity

and one for the pressure. The first integral becomes

I1 ¼ iz0k2pa3uc

ðac

0

cos h sin hdh (66)

¼ iz0kucpa3 sin2ac; (67)

where z ¼ a cos h. For the second integral, one must use the

entire expansion of Eq. (15) for the pressure. However,

because the z component of the sphere’s unit normal vector

is ẑ ¼ cos h ¼
ffiffiffiffiffiffiffiffiffiffi
3=4p

p
Y1

0ðh;/Þ,
40 only the U1

0 term remains

due to orthogonality, such that

I2 ¼ �i4pz0a2 h1ðkaÞ
3h
ð2Þ0
1 ðkaÞ

uiA1ðaiÞ
3

4p
(68)

¼ iz0ka3 p
2

ui sin2h; (69)

provided that ka� 1. Thus, the total moment for a single

cap becomes
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Li ¼ iz0k
3pa3

2
ui sin2ai; (70)

from which one can generalize that for N caps, each directed

toward r̂i,

D ¼
XN

i¼1

r̂iLi; ka� 1: (71)

Substituting appropriate values of r̂i and Li for the cap and

aperture aligned on the z axis yields

D ¼ ðLc � LaÞ ẑ; ka� 1; (72)

which is equivalent to Eq. (65).

F. Radiated sound power

Once the expansion coefficients Gm
n are known, the

time-averaged sound power radiated by the source relates

as39

hWðkÞit ¼
1

2z0k2

X1
n¼0

Xn

m¼�n

jGm
n ðkÞj

2: (73)

The power radiated by the n¼ 0 term, associated with the

monopole moment, is

hWðkÞiðmÞt ¼ z0k2jUmj2

8p
; (74)

which tends to 0 for low frequencies since Um vanishes. The

power radiated from the n¼ 1 terms, associated with the

dipole moment, is

hWðkÞiðdÞt ¼
k2

24pz0

X3

l¼1

jDlj2: (75)

When the cap and aperture are aligned on the z axis, the

expression simplifies to

hWðkÞiðdÞt �
z03pðkaÞ4

32
juca sin2ac � uaa sin2aaj2: (76)

Finally, when the cap and aperture have the same size

(ac ¼ aa) and in the case that ka <<< 1 so uc ¼ �ua,

hWðkÞiðdÞt �
z03pðkaÞ4

8
jucj2a2 sin4ac: (77)

To illustrate these trends, Fig. 4 shows several calcu-

lated sound power level curves for an equal-sized cap

and aperture (ac ¼ aa ¼ 20�) placed on opposing sides

[ðhc;/cÞ ¼ ð90�; 0�Þ and ðha;/aÞ ¼ ð90�; 180�Þ] of a sphere

of radius a¼ 1 m, with cap particle velocity uc¼ 1.0 mm/s.

The black curve shows the total sound power level calcu-

lated from Eq. (73). The green dotted line indicates the

contribution from the monopole-associated term n¼ 0

[Eq. (74)], and the red dashed line indicates the contribution

from the dipole-associated terms with n¼ 1 [Eq. (75)].

Finally, the blue line shows the low-frequency approxima-

tion for the dipole term from Eq. (77).

With the sound power contribution of the monopole and

dipole moments separated, it is possible to predict the direc-

tional nature of the source qualitatively, provided that the

aperture size is small enough that all assumptions remain

valid. Well below the Helmholtz resonance frequency, indi-

cated by the vertical red dotted line in Fig. 4, most of the

radiated sound power is from the dipole term, such that

dipolar radiation is likely. As frequency approaches the

Helmholtz resonance frequency, the directivity becomes

more monopolar. Finally, above resonance, the relative con-

tributions of the monopole and dipole terms vary, suggesting

more complex directivity patterns.

IV. THEORETICAL RESULTS

A. Comparison with BEM results

A BEM implementation of Eq. (23) allows a numerical

validation of the low-frequency approximation. Figure 5

shows area-weighted directivity factor function deviation

levels41 LQ between the BEM solution and the low-

frequency approximation for three different Hca values and

ac ¼ aa ¼ 18�. For ka< 1, the low-frequency approxima-

tion and BEM solution show excellent agreement; a

frequency-averaged deviation over this range is less than

0.1 dB. For ka> 1, the deviations depend upon Hca. When

the cap and aperture are on opposing sides of the sphere

(Hca ¼ 180�), they are generally small, remaining below

1.0 dB up to at least ka¼ 10. However, when Hca ¼ 90� or

Hca ¼ 135�, deviations greater than 1 dB occur above

ka¼ 3. When the cap and aperture align, only axisymmetric

particle velocity distributions occur at the aperture surface;

FIG. 4. (Color online) Calculated sound power levels of vibrating cap on a

rigid spherical shell with a circular aperture on the opposing side.
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thus, one may anticipate that reasonable agreement follows

by modeling the aperture as a cap with constant velocity.

However, when the cap and aperture do not align, the aper-

ture surface may coincide with nodal lines inside the sphere,

leading to a nonaxisymmetric velocity distribution on its

surface. Accordingly, the simple assumption of constant

velocity over the aperture becomes less reliable, leading to

larger deviations for ka> 1.

B. General directional trends

To illustrate the general directional trends, Fig. 6 shows

directivity balloons based on the low-frequency model with

ac ¼ aa ¼ 18�; ðhc;/cÞ ¼ ð90�; 0�Þ, and ðha;/aÞ ¼ ð90�;
180�Þ for selected ka values. Color and radius both indicate

the levels on a decibel scale. Assuming the cap center repre-

sents the front of the sphere, the vantage point is upward

and to the sphere’s right. As anticipated, the directional

characteristics are essentially dipolar for very small for ka,

as shown by Fig. 6(a); the dipole moment aligns with the

cap and aperture. However, as the frequency approaches the

Helmholtz resonance frequency, the strong dipolar charac-

teristics weaken, and the directivity becomes more ellipsoi-

dal or bean-shaped, as suggested by Fig. 6(b). At the

Helmholtz resonance frequency, there is increased volume

velocity at the aperture, and the directivity is essentially

monopolar, as suggested by Fig. 6(c). Above resonance, the

directivity patterns take on forms similar to those produced

by a cap on a rigid closed sphere, such as Fig. 6(e), with

reduced levels behind the sphere. However, radiation from

the aperture does cause differing patterns from the closed-

sphere case, such as the mushroom-like directivity patterns

seen in Fig. 6(f).

Figure 7 plots the maximum directivity index (DI)10

value over the sphere to quantify these directional trends

over ka for the same source [ac ¼ aa ¼ 18�; ðhc;/cÞ
¼ ð90�; 0�Þ, and ðha;/aÞ ¼ ð90�; 180�Þ]. For an omnidirec-

tional source, the DI is 0 dB while for a dipole source,

Dðh;/Þ / cos h so that the corresponding DI value is

10 log103 � 4:77 dB. The overlaid horizontal dash-dot and

dotted lines indicate these values, respectively. At very low

frequencies, the maximum DI of the source converges to a

value corresponding to dipole radiation, consistent with the

results presented in Figs. 4 and 6. As the frequency

approaches the Helmholtz resonance, indicated by the verti-

cal dashed line, the DI decreases to a value corresponding

to monopole radiation. Finally, above the Helmholtz reso-

nance, the maximum DI value increases again, consistent

with the more complex patterns seen in Fig. 6.

C. Effect of aperture location

The aperture’s relative size and location determine the

source’s dipole moment at low frequencies. Figure 8 shows

far-field polar directivities in the transverse plane when

FIG. 5. (Color online) Directivity factor deviation levels LQ between a

BEM solution and the low-frequency approximation.

FIG. 6. (Color online) Far-field directivity balloons for a vibrating cap on a

rigid spherical shell and a circular aperture on the opposing side. The

results, based on the low-frequency model, are for (a) ka¼ 0.1, (b) ka¼ 0.2,

(c) ka¼ 0.4 (near the Helmholtz resonance frequency), (d) ka¼ 1, (e)

ka¼ 1.5, and (f) ka¼ 2.
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ka¼ 0.001, ac ¼ 20�; ðhc;/cÞ ¼ ð90�; 0�Þ, and aa ¼ 5�. The

aperture location varies in six steps from ðha;/aÞ
¼ ð90�; 180�Þ (the opposing side of the sphere from the cap)

to ðha;/aÞ ¼ ð90�; 270�Þ (the right side of the sphere). In

each plot, the blue line indicates ðhc;/cÞ and the red line

indicates ðha;/aÞ. The green-dotted line denotes the pat-

tern’s null, which falls between ðhc;/cÞ and ðha;/aÞ. The

results show how the aperture location alters the source’s

directivity pattern so that the maximum radiation direction

may not align with the direction of the vibrating cap.

V. EXPERIMENTAL VALIDATION

A 3D-printed spherical loudspeaker of exterior radius

a¼ 12 cm and 5 mm wall thickness served as a tool to exper-

imentally validate the directional characteristics of the theo-

retical model. The loudspeaker included a single driver

positioned at ðhc;/cÞ ¼ ð90�; 0�Þ with a 7 cm effective radi-

ating diameter and cap angle ac � 36�. In addition to the

spherical loudspeaker’s aa � 33� aperture at ðha;/aÞ
¼ ð90�; 0�Þ, two variable-sized (aa � 15� and aa � 23�),
open spherical shell segments attach to the back and allow a

total of three different aperture sizes. A 1.17 m radius rotat-

ing microphone array with 36 12.7 mm (0.5 in.) micro-

phones measured the directivity in 5� resolution in both the

polar and azimuthal angles, consistent with the AES sam-

pling standard.42 The array omitted the nadir (south pole)

measurement position because of the obstruction caused by

the loudspeaker support structure. Figure 9 shows the spher-

ical loudspeaker (black) in the measurement system with

one of the spherical shell segments (white) attached.

The experimental spherical source embodiment

involved several inconsistencies with the theoretical model.

First, it employed a cone loudspeaker rather than an ideal

radially vibrating cap. Second, its shell had a finite rather

than infinitesimal thickness. Third, to accommodate an

interchanging of various fittings, the aperture has a flat

baffle rather than a curved baffle. These practical limitations

created some ambiguity in establishing the proper values for

the sphere radius a and aperture angle aa. However, rather

than considering separate interior and exterior values for

these parameters, the averaged value yielded a reasonable

approximation.

Figure 10 shows the spherically averaged21 frequency-

response function between the electrical input signal and the

array microphones for the three different aperture areas over

a frequency range near the Helmholtz resonance frequency.

The vertical dashed lines indicate the estimated fH frequen-

cies using Eq. (54). In all cases, the predicted resonance fre-

quencies are less than 5% from the measured values.

Two additional vertical lines, labeled as fA1 and fA2,

indicate the first two air resonance frequencies of a closed,

rigid cavity. Peaks in the spherical loudspeaker response are

evident just above these values. The smaller the aperture

size, the closer the measured resonance frequencies

approach the rigid, closed-cavity values.

A small resonance peak appears near ka¼ 1. Because

numerical finite-element method (FEM) simulations of the

FIG. 7. (Color online) Maximum DI over the sphere for a vibrating cap on

a rigid spherical shell and a circular aperture on the opposing side.

FIG. 8. (Color online) Far-field directivity of a vibrating cap on a spherical

cap for ðha;/aÞ ¼ (a) ð90�; 180�Þ, (b) ð90�; 198�Þ, (c) ð90�; 216�Þ, (d)

ð90�; 234�Þ, (e) ð90�; 252�Þ, (f) ð90�; 270�Þ.
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plastic spherical enclosure suggest structural resonances in

this spectral region, the resonance is likely due to either

structural cavity properties or an electro-acoustic resonance

of the driver. The preceding developments have already

accounted for the Helmholtz and higher acoustic resonances,

and the smaller resonance was not visible in the rigid-walled

BEM simulations.

Figure 11 plots several modeled and measured source

directivities at 100 Hz (ka¼ 0.2) for the three aperture sizes.

The directivity is nearly omnidirectional for the smallest

size because the measurement frequency is close to its mea-

sured Helmholtz resonance frequency fH¼ 159 Hz

(~f H ¼ 165 Hz). As the aperture sizes increase, the resonance

frequencies shift higher to 213 and 267 Hz, meaning the

fixed 100 Hz measurement frequency becomes relatively

low, and the directivities become successively dipolar (com-

pare Fig. 6). The levels LQ of directivity factor function

deviations between the measured and modeled patterns are

0.6, 0.4, and 0.3 dB for the smallest to largest aperture sizes,

respectively. Thus, the low-frequency modeling approxima-

tions agree well with the measurements at this frequency.

Figure 12 plots modeled and measured directivities for

the source at 700 Hz (ka¼ 1.5). Although ka> 1, the good

agreement remains between the modeled and measured direc-

tivities, with LQ being 0.3, 0.3, and 0.4 dB for the smallest to

FIG. 9. (Color online) Directivity measurement system assessing the radia-

tion of a spherical loudspeaker positioned at its center. The white disk con-

trols the aperture size.

FIG. 10. (Color online) Spherically averaged magnitude response of the

spherical loudspeaker with three distinct aperture sizes. The vertical lines

show estimated Helmholtz and closed-cavity air resonance frequencies.

FIG. 11. (Color online) Directivity balloons at 100 Hz (ka¼ 0.2) for a mod-

eled (a)–(c) and measured (d)–(f) spherical loudspeaker with circular aper-

ture angles (a), (d) aa ¼ 15�; (b), (c) aa ¼ 23�; and (c), (f) aa ¼ 33�.
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largest aperture sizes, respectively. The directivity patterns are

similar to the mushroom-like shapes in Fig. 6.

Figure 13 plots modeled and measured directivities for

the source at 1 kHz (ka¼ 2.2). More significant deviations

are visible between the simulated and measured patterns at

this higher frequency. The deviation level LQ has become

1.1, 0.8, and 0.8 dB for the smallest to largest aperture sizes,

respectively. However, despite the larger deviations, the

essential directional characteristics remain credible for the

modeled behavior. The measured directivity patterns show

three distinct lobes, with substantial radiation behind the

loudspeaker.

Figure 14 plots modeled and measured directivities for

the source at 1.5 kHz (ka¼ 3.2). As anticipated, the devia-

tions have increased; the LQ values are 1.5, 1.7, and 1.4 dB

for the smallest to largest aperture sizes, respectively.

However, a general qualitative agreement between simu-

lated and measured directivities remains. The measured

directivity has a unique form with distinct lobes and a

mushroom-shaped region of intense radiation directly in

front of the loudspeaker driver. For the larger apertures, the

most substantial radiation is behind the loudspeaker rather

than in front.

VI. ANALYSIS AND DISCUSSION

Figure 15 shows graphs of LQ values between the simu-

lated and measured data for each of the three aperture sizes.

Figure 15(a) shows the results for simulated directivities

using Ua for the aperture velocity, as derived from the self-

and mutual impedances in Eq. (35). With two exceptions,

the directivity deviations remain below 1.0 dB up to ka¼ 2.

The sharp deviation peak near ka¼ 1 corresponds to the res-

onance peak in Fig. 10. The smaller peak near ka¼ 0.8 also

coincides with a small bump in the black curve and, to a

lesser extent, in the red curve of Fig. 10. Visual inspection

of the measured directivities at these frequencies reveals a

FIG. 12. (Color online) Directivity balloons at 700 Hz (ka¼ 1.5) for a mod-

eled (a)–(c) and measured (d)–(f) spherical loudspeaker with circular aper-

ture angles (a), (d) aa ¼ 15�; (b), (e) aa ¼ 23�; and (c), (f) aa ¼ 33�.

FIG. 13. (Color online) Directivity balloons at 1 kHz (ka¼ 2.2) for a mod-

eled (a)–(c) and measured (d)–(f) spherical loudspeaker with circular aper-

ture angles (a), (d) aa ¼ 15�; (b), (c) aa ¼ 23�; and (c), (f) aa ¼ 33�.
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“lumpy” characteristic to the balloons, indicative of wave

interference. As discussed in Sec. V, these anomalies are

likely due to structural or other resonances not accounted

for in the rigid-wall model assumption. This assertion

receives additional validation because the deviations occur

at the same frequencies regardless of the aperture size and

thus appear independent of the strictly acoustic source prop-

erties. Above ka¼ 2, the deviations between measurements

and the model continue to grow, exceeding 3.0 dB by around

ka¼ 6. Vertical dashed lines in the figure represent the reso-

nance frequencies of a closed, rigid-walled sphere. Near

these resonances, spikes in the deviation curves are

apparent.

Figure 15(b) shows similar LQ graphs for directivities

simulated using ~Ua for the aperture velocity, as derived

from lumped-element parameters in Eq. (52). The deviations

for ka< 1 are virtually identical to those derived from Ua.

However, for ka> 1, the deviations rise to near 2.0 dB by

ka¼ 2.0 and quickly rise to over 3.0 dB before ka¼ 3.0. As

suggested by Fig. 3, ~Ua tends gradually to zero above reso-

nance, whereas Ua rises again. Thus, using Ua over ~Ua

becomes important above the source’s Helmholtz resonance

frequency. Below this range, ~Ua gives a reliable estimate,

which is beneficial when exact formulas for self-and mutual

impedances are unknown due to differing cavity and cap

shapes.

These results, the BEM deviations, and the results from

Sec. V suggest the following rules of thumb. Below ka¼ 1,

the low-frequency model quantitatively agrees well with the

complete solution and measurements. In this spectral region,

the lumped-element parameters reasonably estimate the

aperture volume velocity so that ~Ua � Ua. Above ka¼ 1,

the low-frequency approximation using Ua gives good

agreement up to at least ka¼ 5 when the cap and aperture

align. However, the agreement is less reliable when the cap

and aperture do not align. Additionally, above ka¼ 1, the

FIG. 14. (Color online) Directivity balloons at 1.5 kHz (ka¼ 3.2) for a mod-

eled (a)–(c) and measured (d)–(f) spherical loudspeaker with circular aper-

ture angles (a), (d) aa ¼ 15�; (b), (e) aa ¼ 23�; and (c), (f) aa ¼ 33�.

FIG. 15. (Color online) Directivity factor function deviation levels between

the measured and modeled directivities with (a) aperture velocity Ua and

(b) lumped-element aperture velocity approximation ~Ua.

3896 J. Acoust. Soc. Am. 154 (6), December 2023 Samuel D. Bellows and Timothy W. Leishman

https://doi.org/10.1121/10.0023936

https://doi.org/10.1121/10.0023936


lumped-element estimate ~Ua is unreliable even when the

cap and aperture align.

While the model discussed in the present work is suffi-

cient to predict directional characteristics, the radiated

sound power results appearing in Fig. 4 only apply when the

rigid cap vibrates with infinite internal impedance to pro-

duce a constant, frequency-independent cap velocity. This

assumption is unrealistic when applied to some acoustic

sources, such as loudspeakers. Accurately predicting the

total radiated energy would require properly modeling the

driver’s finite impedance. Finite-impedance effects are par-

ticularly significant near the Helmholtz resonance of the

cavity, where the impedance on the interior side vanishes

(see Fig. 2). Additionally, incorporating thermosviscous

losses is necessary to predict the resonator’s behavior more

accurately.36

VII. CONCLUSIONS

This work has developed a low-frequency approxima-

tion to a vibrating cap on a spherical shell with a circular

aperture. The key idea has been to model the aperture as a

second vibrating cap with a velocity determined by the self-

and mutual impedance between the aperture and the primary

vibrating cap. Lumped-element approximations of the self-

and mutual impedances provided a simplified formula for

the aperture volume velocity and Helmholtz resonance fre-

quency. Multipole moments extracted from the derived

spherical harmonic coefficients reveal that at very low fre-

quencies, the directivity is dipolar. Approaching the

Helmholtz resonance frequency, the directivity becomes

more monopolar until it reaches a quasi-omnidirectional

state at resonance. Above resonance, the directivity takes on

more complex forms. Both numerical BEM simulations and

measurements of a comparable spherical loudspeaker vali-

dated the low-frequency approximation, yielding good

quantitative agreement in the low-frequency regime.

The model’s results will be beneficial for understanding

and predicting the directivities of sources with apertures,

such as musical instruments with sound holes, guitar ampli-

fiers with open backs, or loudspeakers with vents. However,

specific applications of this model to these and other sources

will require careful adaptations. For example, applying the

model to loudspeakers would require properly representing

the finite-impedance effects of the loudspeaker driver and

appropriate losses. For application to musical instruments

such as the guitar, the influence of the structural vibrations

of the resonator body must be considered in addition to radi-

ation through the sound hole. Because this work focused on

low-frequency approximations, future research could also

develop a numerical method such as MAR to obtain results

valid for ka
 1. Other research could consider models for

multiple caps and apertures.
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