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ABSTRACT

The directivities of acoustic sources have many applications in auralizations, room acoustical designs, and
sound source modeling. Of practical importance in directivity measurements is the location of the source’s
acoustic center relative to the array’s geometric center. The authors recently developed an acoustic source
centering algorithm based on the equivalence of far-field magnitude directivity patterns of centered and
uncentered directivities. This work explores how the far-field phase directivity patterns likewise lead to
source-centering procedures. While the phase-based algorithm is less robust than the magnitude-based
approach, the technique is notable for its significant improvements in computational efficiency. The paper
provides algorithm validations with both theoretical sources and measured trumpet directivities.
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1. INTRODUCTION

The directivity of a sound source characterizes the spatial dependence of its acoustic radiation over
frequency. Understanding the directional characteristics of sources has broad applications, including
auralizations, room acoustical design, microphone placement, and source modeling. Directivity
measurements are typically performed by sampling at a constant-radius spherical surface with a
specified sampling density, such as the 5 or 10-degree angular resolution suggested by the AES
sampling standard (1). Of practical concern when measuring the directivity of a source is the location
of the source relative to the geometric center of the microphone array. Source misalignment within
the array can lead to several undesirable effects. First, the measured pressure on the array surface may
not be representative of the desired far-field directivity pattern (2). Additionally, source translations
increase the number of expansion terms required, which in turn increase the likelihood of spatial
aliasing (3, 4). Thus, proper source positioning within the array is essential for practical directivity
measurements.

More recently, the authors have shown that in the far-field, the magnitude pattern of centered and
translated sources are equivalent (5). One can exploit this equivalence to determine the reference
frame from which the near-field pattern converges most rapidly to the known far-field magnitude
pattern. While this approach is robust at higher frequencies and useful for complex sources, its
computational expense is limiting because the formulation requires extraction of magnitude patterns
in the spatial domain rather than an efficient spherical-harmonic-based process. To improve upon
these limitations, this work presents an acoustic centering algorithm based on a source’s far-field
phase patterns. The relations between the far-field phases of centered and translated sources can cast
the acoustic centering problem as the detection of arrival (DOA) of a local plane-wave with efficient
solutions using spherical-harmonic-domain beamforming. Theoretical results help validate the
robustness of the approach, and the technique successfully centers measured trumpet directivities.
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2, ALGORITHM

2.1 Far-field Phase Relationship

Consider an acoustic source radiating into free space. If a closed spherical surface of radius » = a
entirely encompasses the source, the exterior solution to the Helmholtz equation in spherical
coordinates yields the pressure for » > a (6):
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where k is the wavenumber, h,(IZ) (kr) are the spherical Hankel functions of the second kind of order
n, Y7'(6,¢) are the normalized spherical harmonics of degree n and order m, and c¢)'(k) are the
frequency-dependent expansion coefficients. Exploiting the orthogonality of the spherical harmonics
over the sphere yields the expansion coefficients:
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where * indicates complex conjugation. In the acoustic and geometric far-field of the source, where
kr >> [ and r >> d, with d being the spatial extent of the source, the asymptotic form of the spherical
Hankel functions simplifies Eq. (1) to the form
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The far-field simplification allows separation of the pressure field’s angular and radial dependence,
yielding an unnormalized directivity function
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Next, one may assume that the source has an acoustic center and let D.(6, ¢, k) denote its far-
field normalized directivity function with the origin of the coordinate system aligned with the acoustic
center. One may further let D(0, ¢, k) denote the sources’ far-field directivity function measured with
the acoustic center located at position r.. The first directivity product theorem then relates these two
directivity functions as (5, 6)

D9, ¢, k) = e*7<D (6, , k), ®)

where # is the unit vector in the direction of 7. This key result shows that in the far-field, the
magnitude directivity patterns of the centered and uncentered source are equivalent. However, the
phase shift factor e*"e™ between the centered and uncentered patterns remains. Figure 1 illustrates
this shift through color-mapped far-field phase spheres for a monopole, dipole, and radially vibrating
cap set on a rigid sphere. Each constant-radius plot describes the phase of the pressure using a cyclical
color scheme. Figures 1(a), 1(d), and 1(g) show the far-field phase of each source when aligned with
the array center. For the case of the vibrating cap on a sphere, the center of the sphere aligns with the
array center. Next, Figs. 1(b), 1(¢e), and 1(h) show the far-field phase for each source after a translation
ofr.=(0.0, 0.1, 0.3) m. Finally, Figs. 1(c), 1(f), and 1(i) show the difference in phase pattern between
the translated and untranslated cases. The numerical results verify that regardless of how simple or
complex the initial phase of an untranslated source may be, the phase difference depends only on the
translation and wavenumber as described in Eq. (5).
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Figure 1 — Far-field phase spheres for a monopole [(a)-(c)], dipole [(d)-(f)], and radially vibrating cap
on a sphere [(g)-(i)]. These include cases for the sources located at the center of the measurement
array [(a), (d), and (g)], translated to position (0.0, 0.1, 0.3) m [(b), (e), and (h)], and the phase
differences between the untranslated and translated sources [(c), (f), and (1)].

2.2 Phase-based Centering Algorithm

Previous work exploited the equivalence of the far-field directivity magnitudes to develop a
centering algorithm that is robust even at high frequencies and for complex sources (5). However, a
disadvantage of the algorithm is that its use of magnitude patterns produces a computationally
expensive approach in the spatial domain. This section leverages phase relationships between far-field
directivities to yield a more computationally efficient algorithm with less robustness.

To begin with, for some sources one may assume that the phase of the centered pattern is roughly
constant so that the measured far-field phase of the translated source is

Y0, ¢, k) = kr, - 7. (6)
The pressure of a unit-amplitude plane wave is
p(T, 0’ ¢’ k) — e—ik-r - e—irk-?" (7)

where k is the wavenumber vector with magnitude &, which points in the direction of propagation. By
associating the term kr. of the far-field phase with the -rk term of the plane wave, one may cast the
acoustic centering problem as determining the direction of arrival (DOA) of the plane wave. One key
difference between the two problems is that for the plane-wave DOA, r is typically known, so the
steering need only be performed over the angular coordinates 8 and ¢. However, for the source
centering problem, . is unknown; the varying radial positions require additional consideration.

A straightforward approach to the problem is to use a delay-and-sum beamformer. In this case one
may let y be the output of the beamformer so that (7)
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Here, p,m is a vector containing the spherical harmonic expansion coefficients of the far-field phase
e and wy,, are the spherical harmonic coefficients of the beamforming weights,
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where j,, are the spherical Bessel functions of order n. The position (r, 8, ¢) that maximizes the
beamformer output y is then the acoustic source center. Figure 2 illustrates this approach for a
monopole located at 7. = 0.3 m and (6, ¢.) = (45°, 90°) with wavenumber k = 10 m'!. Six different
spherical projections for varying radial steering positions ». show the beamformer output. The color
scheme of each projection is kept constant to highlight that the acoustic center must be determined
not only from the angular portion but also from the radial component. The beamformer's maximum
output coincides with the monopole's true location, indicated by a red dot.
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Figure 2 — Delay-and-sum beamformer output for the acoustic source centering problem.

While the formulation based on Eq. (8) provides a satisfactory result, one can further improve
the algorithm’s computational efficiency by noting the strong axial symmetry of the far-field phase as
seen in Figs. 1(c), (f), and (i). Because the order m = 0 spherical harmonics are axially symmetric
about Z for any degree n, the rotation of the far-field phase function that maximizes the energy in the
pY coefficients can determine the direction in which #, points. The Wigner-D rotation matrices
D(6, ¢, ) allow this rotation to be carried out in the spherical harmonic domain (7). By letting

qnm (0, ), P) = D(0, ), Y)Pnm (10)

be the far-field phase spherical harmonic expansion coefficients after rotation, one finds that
maximizing the objective function
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yields the rotation required to orient the phase so that it is axially symmetric about Z. Once this
rotation is known, the direction (6., ¢.) can be determined, and the delay-and-sum equation weights
can be used with fixed angular components and varying radial components. The ambiguity in the
rotation angle between Z and —Z resolves by allowing r. to vary over both positive and negative
ranges. Furthermore, because the degree n = 1 expansion terms contain the relevant directional



information for a single plane wave, the expansion coefficients p,,, may be truncated to a maximal
N =1 expansion, with the associated Wigner-D rotation matrices being of size 4 x 4 for increased
computational efficiency.

3. THEORETICAL RESULTS

The dodecahedron regular polyhedron loudspeaker (RPL) is an interesting source to study because,
even though it behaves much like a simple source at low frequencies, its directivity becomes complex
at high frequencies (8). If one assumes the source has a single acoustic center, it must fall at the RPL
center due to geometrical arguments. Thus, the RPL provides an ideal case of a complex radiator with
a known acoustic center. Figure 3(a) shows the centered far-field phase of a simulated dodecahedron
RPL for wavenumber £ = 30 m! and RPL radius @ = 0.2 m. Strong phase shifts are evident for each
driver from the red patches in the general sphere of blue. Figure 3(b) shows the far-field phase after
a source translation to r. = (0.0, 0.1, 0.2) m. Figure 3(c) then shows the simplified phase using the
degree N = 1 expansion, which correctly identifies the direction of translation.
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Figure 3 —Far-field color-mapped phase spheres for the (a) centered, (b) translated, and (c) translated
dodecahedron using a simplified degree N = 1 expansion.

Figure 4 shows the centering results. The projected sphere plots the objective function J(6',¢")
applied to the simplified phase shown in Fig. 3(c). The red dot indicates the true angular direction of
the translation whereas the black X indicates the predicted direction. The line plot shows the delay-
and-sum output using the identified direction and varying the radial parameter r.. The vertical dashed
red line indicates the true radial position.
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Figure 4 — Centering results for dodecahedral RPL. Lefi: Objective function J(8',¢"). Right:
normalized delay-and-sum output using a fixed angular position and varying re.

4, EXPERIMENTAL RESULTS

A radius a =1.17 m rotating semi-circular microphone array measured the directivity of a played
trumpet with various mutes. The microphone array consisted of 36 12.7 mm (0.5”) precision
microphones that were relatively calibrated to a dedicated channel. The microphones were placed in
5° polar angle increments. Subsequent arc rotations in 5° azimuthal increments swept out a sphere
with sampling density consistent with the AES standard on loudspeaker directivities (1), minus the



nadir (south pole) measurement position. A near-field reference microphone normalized varying
excitation levels between the repeated measurements through frequency response functions (FRFs) as
outlined in Ref. (9). A head restraint and laser mounted to the instrument restricted the musician’s
movements for greater consistency between measurements. Figure 5 shows the trumpet player within
the measurement system.

Figure 5 — Trumpet player within measurement arc while playing with a cup mute.

Because of the small arc radius, placement the trumpet’s bell close to the array’s center was not
practical. Consequently, the authors anticipated source misalignment between the instrument's
acoustic center and the array's geometric center. Figure 6 shows the raw FRF-based directivity
balloons with 1 Hz narrowband resolution for the first three partials of the note E4: 329 Hz, 658 Hz,
and 988 Hz, respectively). Color and radius both depict levels on the surface of constant » = a, with
the 0° marker indicating the direction in front of the musician. Figures 6(a)-(c) show the magnitude
of the FRF-based balloon, whereas Figs. 6(d)-(f) show the phase. The magnitude balloons highlight
the effectiveness of the FRF method, as the directivity functions show smoothly varying functions
that reveal interesting directional characteristics, such as increasing diffraction lobes at higher
frequencies. However, there appear to be reduced levels below the musician, likely due to the source
placement within the array. The phase-based FRF-balloons validate this assertion, as similar patterns
appear in Figs. 1 and 3(c).

Figures 6(g)-(i) show the far-field magnitude directivities after propagation via Eq. (3) using
an N = 34 expansion, the maximal possible for the given sampling configuration. The directivity is
much less directional, implying that many of the features evident in Figs. 6(a)-(c) are likely near-field
effects. In addition, the principal axis of radiation lowers slightly.

The phase-based centering algorithm determined the acoustic center of each partial to be at
(0.25, 0.00, 0.43) m, (0.25, 0.00, 0.42) m, and (0.29, 0.00, 0.34) m, respectively. While the acoustic
center is generally considered to be frequency dependent, the position remains relatively consistent
for the three partials. Figures 6(j)-(1) show the corresponding centered directivities of Figs. 6(a)-(c)
based on expanding the pressure about the estimated acoustic center at a @ = 1.7 m radius. Importantly,
they show strong similarities with the far-field pattern, even though these are not far-field directivities.
This result shows the effectiveness of the centering algorithm, as the pressure measured about the
acoustic center should quickly converge to the far-field pattern (5). The area-weighted RMS deviation
values (8) show that the deviations between the centered patterns of 6(j)-(1) and the far-field patterns
of 6(g)-(i) were only 1.3, 1.7, and 2.0 dB compared to 1.9, 2.1, and 2.5 dB for the measured patterns
of 6(a)-(c). Thus, the centering algorithm effectively reduces deviations between far-field directivities
and nearer-field measurements.



-20
Phase dB

Figure — 6. Measured narrowband trumpet directivity patterns for the first [(a), (d), (g), and (j)], second
[(b), (e), (h), and (k)] and third [(e), (), (i), and (1)] partials. Figures (a)-(c) are FRF-based magnitude
directivity patterns at the measurement surface. Figures (d)-(f) are the FRF-based phase patterns on
the measurement surface. Figures (g)-(i) are the far-field magnitude patterns based on N=34
expansions. Figures (j)-(1) are the centered near-field magnitude patterns using the proposed algorithm.

5. CONCLUSIONS

This work has presented an acoustic centering algorithm based on the far-field phases of sources.
It allows the acoustic centering problem to be reformulated in terms of a spherical beamforming
problem. Theoretical directivities and measured musical instrument directivities validate the method.
Future work could include the application of the algorithm to other sound sources and exploring other
approaches for sources with more complex phase patterns.
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